题目内容
在斜三棱柱ABC-A1B1C1中,侧面ACC1A1⊥平面ABC,∠ACB=90°.
(1)求证:BC⊥AA1.
(2)若M,N是棱BC上的两个三等分点,求证:A1N∥平面AB1M.
(1)求证:BC⊥AA1.
(2)若M,N是棱BC上的两个三等分点,求证:A1N∥平面AB1M.
证明:(Ⅰ)因为∠ACB=90°,所以AC⊥CB,
又侧面ACC1A1⊥平面ABC,且平面ACC1A1∩平面ABC=AC,BC?平面ABC,所以BC⊥平面ACC1A1,
又AA1?平面ACC1A1,所以BC⊥AA1.
(II)连接A1B,交AB1于O点,连接MO,
在△A1BN中,O,M分别为A1B,BN的中点,所以OM∥A1N
又OM?平面AB1M,A1N不属于平面AB1M,
所以A1N∥平面AB1M.
又侧面ACC1A1⊥平面ABC,且平面ACC1A1∩平面ABC=AC,BC?平面ABC,所以BC⊥平面ACC1A1,
又AA1?平面ACC1A1,所以BC⊥AA1.
(II)连接A1B,交AB1于O点,连接MO,
在△A1BN中,O,M分别为A1B,BN的中点,所以OM∥A1N
又OM?平面AB1M,A1N不属于平面AB1M,
所以A1N∥平面AB1M.
练习册系列答案
相关题目