题目内容

设函数f(x)=2x+a·2-x-1(a为实数).

(1)若a<0,用函数单调性定义证明:y=f(x)在(-∞,+∞)上是增函数;

(2)若a=0,y=g(x)的图象与y=f(x)的图象关于直线y=x对称,求函数y=g(x)的解析式.

答案:
解析:

  解:(1)设任意实数x1<x2,则f(x1)-f(x2)=

  =

  

  又,∴f(x1)-f(x2)<0,所以f(x)是增函数.

  (2)当a=0时,y=f(x)=2x-1,∴2x=y+1,∴x=log2(y+1),y=g(x)=log2(x+1).


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网