题目内容
设函数f(x)=2x+3,若g(x+2)=f(x),则有
A.g(x)=2x+1
B.g(x)=2x-1
C.g(x)=2x-3
D.g(x)=2x+7
设函数f(x)=|2x+1|-|x-4|.
(1)解不等式f(x)>2;
(2)求函数y=f(x)的最小值.
设函数f(x)=2x+3,g(x+2)=f(x),则g(x)的表达式是( ).
A.2x+1 B.2x-1 C.2x-3 D.2x+7
设函数f(x)=2x+-1(x<0),则f(x) ( )
A.有最大值 B.有最小值
C.是增函数 D.是减函数
设函数f(x)=2x+a·2-x-1(a为实数).若a<0,用函数单调性定义证明:y=f(x)在(-∞,+∞)上是增函数.