题目内容
(2012•资阳一模)已知数列{an}各项为正数,前n项和Sn=
an(an+1).
(1)求数列{an}的通项公式;
(2)若数列{bn}满足b1=1,bn+1=bn+3an,求数列{bn}的通项公式;
(3)在(2)的条件下,令cn=
,数列{cn}前n项和为Tn,求证:Tn<2.
1 |
2 |
(1)求数列{an}的通项公式;
(2)若数列{bn}满足b1=1,bn+1=bn+3an,求数列{bn}的通项公式;
(3)在(2)的条件下,令cn=
3an | ||
2
|
分析:(1)已知前n项和Sn=
an(an+1),当n≥2时,利用an=Sn-Sn-1=
an(an+1)-
an-1(an-1+1),了点数列{an}是以1为首项,1为公差的等差数列,从而可求数列{an}的通项公式;
(2)由bn+1=bn+3an得bn+1-bn=3an=3n,再用叠加法求数列{bn}的通项公式;
(3)cn=
=
=
,当n≥2时,cn=
<
=
=
-
.从而可求数列{cn}前n项和为Tn,即可证得结论.
1 |
2 |
1 |
2 |
1 |
2 |
(2)由bn+1=bn+3an得bn+1-bn=3an=3n,再用叠加法求数列{bn}的通项公式;
(3)cn=
3an | ||
2
|
3n | ||
2×[
|
2×3n |
(3n-1)2 |
2×3n |
(3n-1)2 |
2×3n |
(3n-1)(3n-3) |
2×3n-1 |
(3n-1)(3n-1-1) |
1 |
3n-1-1 |
1 |
3n-1 |
解答:解:(1)当n=1时,a1=S1=
a1(a1+1),
∴
=a1,又a1>0,故a1=1.(1分)
当n≥2时,an=Sn-Sn-1=
an(an+1)-
an-1(an-1+1),(2分)
化简得(an+an-1)(an-an-1-1)=0,由于an>0,
∴an-an-1=1,故数列{an}是以1为首项,1为公差的等差数列,
∴an=n.(4分)
(2)由bn+1=bn+3an得bn+1-bn=3an=3n,
∴bn=b1+(b2-b1)+(b3-b2)+…+(bn-bn-1)=1+3+…+3n-1=
(3n-1).(8分)
(3)cn=
=
=
,(9分)
当n=1时,c1=
=
<2;
当n≥2时,cn=
<
=
=
-
.(10分)
∴Tn=c1+c2+…+cn=
+(
-
)+(
-
)+…+(
-
)=2-
<2.(12分)
1 |
2 |
∴
a | 2 1 |
当n≥2时,an=Sn-Sn-1=
1 |
2 |
1 |
2 |
化简得(an+an-1)(an-an-1-1)=0,由于an>0,
∴an-an-1=1,故数列{an}是以1为首项,1为公差的等差数列,
∴an=n.(4分)
(2)由bn+1=bn+3an得bn+1-bn=3an=3n,
∴bn=b1+(b2-b1)+(b3-b2)+…+(bn-bn-1)=1+3+…+3n-1=
1 |
2 |
(3)cn=
3an | ||
2
|
3n | ||
2×[
|
2×3n |
(3n-1)2 |
当n=1时,c1=
2×31 |
(31-1)2 |
3 |
2 |
当n≥2时,cn=
2×3n |
(3n-1)2 |
2×3n |
(3n-1)(3n-3) |
2×3n-1 |
(3n-1)(3n-1-1) |
1 |
3n-1-1 |
1 |
3n-1 |
∴Tn=c1+c2+…+cn=
3 |
2 |
1 |
3-1 |
1 |
32-1 |
1 |
32-1 |
1 |
33-1 |
1 |
3n-1-1 |
1 |
3n-1 |
1 |
3n-1 |
点评:本题重点考查等差数列的通项,考查叠加法求和,考查放缩法的运用,解题的关键是叠加法求和.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目