题目内容

(2012•资阳一模)已知数列{an}各项为正数,前n项和Sn=
1
2
an(an+1)

(1)求数列{an}的通项公式;
(2)若数列{bn}满足b1=1,bn+1=bn+3an,求数列{bn}的通项公式;
(3)在(2)的条件下,令cn=
3an
2
b
2
n
,数列{cn}前n项和为Tn,求证:Tn<2.
分析:(1)已知前n项和Sn=
1
2
an(an+1)
,当n≥2时,利用an=Sn-Sn-1=
1
2
an(an+1)-
1
2
an-1(an-1+1)
,了点数列{an}是以1为首项,1为公差的等差数列,从而可求数列{an}的通项公式;
(2)由bn+1=bn+3anbn+1-bn=3an=3n,再用叠加法求数列{bn}的通项公式;
(3)cn=
3an
2
b
2
n
=
3n
[
1
2
(3n-1)]
2
=
3n
(3n-1)2
,当n≥2时,cn=
3n
(3n-1)2
3n
(3n-1)(3n-3)
=
3n-1
(3n-1)(3n-1-1)
=
1
3n-1-1
-
1
3n-1
.从而可求数列{cn}前n项和为Tn,即可证得结论.
解答:解:(1)当n=1时,a1=S1=
1
2
a1(a1+1)

a
2
1
=a1
,又a1>0,故a1=1.(1分)
当n≥2时,an=Sn-Sn-1=
1
2
an(an+1)-
1
2
an-1(an-1+1)
,(2分)
化简得(an+an-1)(an-an-1-1)=0,由于an>0,
∴an-an-1=1,故数列{an}是以1为首项,1为公差的等差数列,
∴an=n.(4分)
(2)由bn+1=bn+3anbn+1-bn=3an=3n
∴bn=b1+(b2-b1)+(b3-b2)+…+(bn-bn-1)=1+3+…+3n-1=
1
2
(3n-1)
.(8分)
(3)cn=
3an
2
b
2
n
=
3n
[
1
2
(3n-1)]
2
=
3n
(3n-1)2
,(9分)
当n=1时,c1=
31
(31-1)2
=
3
2
<2

当n≥2时,cn=
3n
(3n-1)2
3n
(3n-1)(3n-3)
=
3n-1
(3n-1)(3n-1-1)
=
1
3n-1-1
-
1
3n-1
.(10分)
∴Tn=c1+c2+…+cn=
3
2
+(
1
3-1
-
1
32-1
)+(
1
32-1
-
1
33-1
)+…+(
1
3n-1-1
-
1
3n-1
)
=2-
1
3n-1
<2
.(12分)
点评:本题重点考查等差数列的通项,考查叠加法求和,考查放缩法的运用,解题的关键是叠加法求和.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网