题目内容
15.在△ABC中,a=9,b=3$\sqrt{3}$; A=120°,则sin(π-B)等于( )A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | -$\frac{{\sqrt{3}}}{2}$ |
分析 利用已知及正弦定理即可求得sinB,结合诱导公式即可得解.
解答 解:由正弦定理:$\frac{a}{sinA}=\frac{b}{sinB}$,可得sinB=$\frac{bsinA}{a}$=$\frac{3\sqrt{3}×\frac{\sqrt{3}}{2}}{9}$=$\frac{1}{2}$,
解得:sin(π-B)=sinB=$\frac{1}{2}$.
故选:A.
点评 本题主要考查了正弦定理,诱导公式的综合应用,属于基础题.
练习册系列答案
相关题目
5.Rt△ABC的角A,B,C所对的边分别是a,b,c(其中c为斜边),分别以a,b,c边所在的直线为旋转轴,将△ABC旋转一周得到的几何体的体积分别是V1,V2,V3,则( )
A. | V1+V2=V3 | B. | $\frac{1}{V_1}+\frac{1}{V_2}=\frac{1}{V_3}$ | ||
C. | $V_1^2+V_2^2=V_3^2$ | D. | $\frac{1}{V_1^2}+\frac{1}{V_2^2}=\frac{1}{V_3^2}$ |
6.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0)的左、右焦点分别为F1,F2,过F2的直线与双曲线C的右支相交于P,Q两点,若PQ⊥PF1,且|PF1|=|PQ|,则双曲线的离心率e=( )
A. | $\sqrt{2}$+1 | B. | 2$\sqrt{2}$+1 | C. | $\sqrt{5+2\sqrt{2}}$ | D. | $\sqrt{5-2\sqrt{2}}$ |
7.已知A,B,C,D是球面上的四个点,其中A,B,C在同一圆周上,若D不在A,B,C所在的圆周上,则从这四点中的任意两点的连线中取2条,这两条直线是异面直线的概率等于( )
A. | $\frac{1}{6}$ | B. | $\frac{1}{5}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |