题目内容
【题目】如图,在平行四边形中,,,现沿对角线将折起,使点A到达点P,点M,N分别在直线,上,且A,B,M,N四点共面.
(1)求证:;
(2)若平面平面,二面角平面角大小为,求直线与平面所成角的正弦值.
【答案】(1)证明见解析;(2)
【解析】
(1)根据余弦定理,可得,利用//,可得//平面,然后利用线面平行的性质定理,//,最后可得结果.
(2)根据二面角平面角大小为,可知N为的中点,然后利用建系,计算以及平面的一个法向量,利用向量的夹角公式,可得结果.
(1)不妨设,则,
在中,
,
则,
因为,
所以,因为//,
且A、B、M、N四点共面,所以//平面.
又平面平面,所以//.
而,.
(2)因为平面平面,且,
所以平面,,
因为,所以平面,,
因为,平面与平面夹角为,
所以,在中,易知N为的中点,
如图,建立空间直角坐标系,
则,,,
,,
,,,
设平面的一个法向量为,
则由,
令,得.
设与平面所成角为,
则.
练习册系列答案
相关题目
【题目】针对某新型病毒,某科研机构已研发出甲乙两种疫苗,为比较两种疫苗的效果,选取100名志愿者,将他们随机分成两组,每组50人.第一组志愿者注射甲种疫苗,第二组志愿者注射乙种疫苗,经过一段时间后,对这100名志愿者进行该新型病毒抗体检测,发现有的志愿者未产生该新型病毒抗体,在未产生该新型病毒抗体的志愿者中,注射甲种疫苗的志愿者占.
产生抗体 | 未产生抗体 | 合计 | |
甲 | |||
乙 | |||
合计 |
(1)根据题中数据,完成列联表;
(2)根据(1)中的列联表,判断能否有的把握认为甲乙两种疫苗的效果有差异.
参考公式:,其中.
参考数据: