题目内容
【题目】给定椭圆 C : ,称圆心在原点,半径为的圆是椭圆 C 的“伴随圆”.若椭圆 C 的一个焦点为 F1(, 0) ,其短轴上的一个端点到 F1 的距离为
(1)求椭圆 C 的方程及其“伴随圆”方程;
(2)若倾斜角 45°的直线 l 与椭圆 C 只有一个公共点,且与椭圆 C 的伴随圆相交于 M .N 两点,求弦 MN 的的长;
(3)点 P 是椭圆 C 的伴随圆上一个动点,过点 P 作直线 l1、l2,使得 l1、l2与椭圆 C 都只有一个公共点,判断l1、l2的位置关系,并说明理由.
【答案】(1)椭圆方程:;伴随圆方程: x2 y2 1 ;(2) 2;(3)垂直,(斜率乘积为 1 ,分斜率存在与否)
【解析】
(1)直接由椭圆C的一个焦点为,其短轴上的一个端点到F1的距离为,求出,即可求椭圆C的方程及其“伴随圆”方程;
(2)先把直线方程与椭圆方程联立,利用对应的判别式为0求出,进而求出直线方程以及圆心到直线的距离;即可求弦MN的长;
(3)先对直线l1,l2的斜率是否存在分两种情况讨论,然后对每一种情况中的直线l1,l2与椭圆C都只有一个公共点进行求解即可证:l1⊥l2.(在斜率存在时,是先设直线方程,把直线与椭圆方程联立,利用斜率为对应方程的根来判断结论).
解:(1)因为,所以b=1
所以椭圆的方程为,
伴随圆的方程为x2+y2=4.
(2)设直线l的方程y=x+b,由得4x2+6bx+3b2﹣3=0
由△=(6b)2﹣16(3b2﹣3)=0得b2=4
圆心到直线l的距离为
所以
(3)①当l1,l2中有一条无斜率时,不妨设l1无斜率,
因为l1与椭圆只有一个公共点,则其方程为或,
当l1方程为时,此时l1与伴随圆交于点,
此时经过点(或且与椭圆只有一个公共点的直线是y=1(或y=﹣1),
即l2为y=1(或y=﹣1),显然直线l1,l2垂直;
同理可证l1方程为时,直线l1,l2垂直.
②当l1,l2都有斜率时,设点P(x0,y0),其中x02+
设经过点P(x0,y0),与椭圆只有一个公共点的直线为y=k(x﹣x0)+y0,
由,消去y得到x2+3(kx+(y0﹣kx0))2﹣3=0,
即(1+3k2)x2+6k(y0﹣kx0)x+3(y0﹣kx0)2﹣3=0,
△=[6k(y0﹣kx0)]2﹣4(1+3k2)[3(y0﹣kx0)2﹣3]=0,
经过化简得到:(3﹣x02)k2+2x0y0k+1﹣y02=0,
因为x02+y02=4,所以有(3﹣x02)k2+2x0y0k+(x02﹣3)=0,
设l1,l2的斜率分别为k1,k2,因为l1,l2与椭圆都只有一个公共点,
所以k1,k2满足方程(3﹣x02)k2+2x0y0k+(x02﹣3)=0,
因而k1k2=﹣1,即l1,l2垂直.