题目内容

【题目】正四面体ABCD中,M是棱AD的中点,O是点A在底面BCD内的射影,则异面直线BM与AO所成角的余弦值为(
A.
B.
C.
D.

【答案】B
【解析】解:取BC中点E,DC中点F,连结DE、BF,则由题意得DE∩BF=O, 取OD中点N,连结MN,则MN∥AO,
∴∠BMN是异面直线BM与AO所成角(或所成角的补角),
设正四面体ABCD的棱长为2,由BM=DE= ,OD=
∴AO= = ,∴MN=
∵O是点A在底面BCD内的射影,MN∥AO,∴MN⊥平面BCD,
∴cos∠BMN= = =
∴异面直线BM与AO所成角的余弦值为
故选:B.

取BC中点E,DC中点F,连结DE、BF,则由题意得DE∩BF=O,取OD中点N,连结MN,则MN∥AO,从而∠BMN是异面直线BM与AO所成角(或所成角的补角),由此能求出异面直线BM与AO所成角的余弦值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网