题目内容
【题目】已知过抛物线的焦点,斜率为
的直线交抛物线于
两点.
(1)求线段的长度;
(2) 为坐标原点,
为抛物线上一点,若
,求
的值.
【答案】(1)9(2)λ=0或λ=2.
【解析】试题分析:第一问求抛物线的焦点弦长问题可直接利用焦半径公式,先写出直线的方程,再与抛物线的方程联立方程组,设而不求,利用根与系数关系得出,然后利用焦半径公式得出焦点弦长公式
,求出弦长,第二问根据联立方程组解出的A、B两点坐标,和向量的坐标关系表示出点C的坐标,由于点C在抛物线上满足抛物线方程,求出参数值.
试题解析:
(1)直线AB的方程是y=2(x-2),与y2=8x联立,消去y得x2-5x+4=0,
由根与系数的关系得x1+x2=5.由抛物线定义得|AB|=x1+x2+p=9,
(2)由x2-5x+4=0,得x1=1,x2=4,从而A(1,-2),B(4,4
).
设=(x3,y3)=(1,-2
)+λ(4,4
)=(4λ+1,4
λ-2
),
又y=8x3,即[2 (2λ-1)]2=8(4λ+1),即(2λ-1)2=4λ+1,
解得λ=0或λ=2.