题目内容
设向量
与
的夹角为α,则cosα<0是
与
的夹角α为钝角的( )
a |
b |
a |
b |
分析:利用向量的夹角和余弦值之间的关系进行判断.
解答:解:若
与
的夹角α为钝角,则90°<α<180°,此时cosα<0.
若cosα<0,当cosα=-1时,此时α=180°,但此时α不是钝角.
所以cosα<0是
与
的夹角α为钝角的必要非充分条件.
故选C.
a |
b |
若cosα<0,当cosα=-1时,此时α=180°,但此时α不是钝角.
所以cosα<0是
a |
b |
故选C.
点评:本题主要考查向量夹角与余弦值之间的关系,比较基础.
练习册系列答案
相关题目
设向量
与
的夹角为θ,
=(2,1),3
+
=(5,4),则cosθ=( )
a |
b |
a |
b |
a |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|