题目内容

1.从装有编号为1,2,3,…,n+1的n+1个球的口袋中取出m个球(0<m≤n,m,n∈N),共有Cn+1m种取法.在这Cn+1m种取法中,不取1号球有C10Cnm种取法;必取1号球有C11Cnm-1种取法.所以C10Cnm+C11Cnm-1=Cn+1m,即Cnm+Cnm-1=Cn+1m成立.试根据上述思想,则有当1≤k≤m≤n,k,m,n∈N时,Cnm+Ck1Cnm-1+Ck2Cnm-2+…+CkkCnm-k=$C_{n+k}^m$.

分析 从装有n+1个球(其中n个白球,1个黑球)的口袋中取出m个球(0<m≤n,m,n∈N),共有Cn+1m种取法.在这Cn+1m种取法中,可以分成两类:一类是取出的m个球全部为白球,另一类是,取出1个黑球,m-1个白球,则Cnm+Cnm-1=Cn+1m根据上述思想,在式子:Cnm+Ck1•Cnm-1+Ck2•Cnm-2+…+Ckk•Cnm-k中,从第一项到最后一项分别表示:从装有n个白球,k个黑球的袋子里,取出m个球的所有情况取法总数的和,故根据排列组合公式,可得答案.

解答 解:在Cnm+Ck1•Cnm-1+Ck2•Cnm-2+…+Ckk•Cnm-k中,
从第一项到最后一项分别表示:从装有n个白球,k个黑球的袋子里,取出m个球的所有情况取法总数的和,
故从装有n+k球中取出m个球的不同取法数$C_{n+k}^m$.
故答案为:$C_{n+k}^m$.

点评 这个题结合考查了推理和排列组合,处理本题的关键是熟练掌握排列组合公式,明白每一项所表示的含义,再结合已知条件进行分析,最后给出正确的答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网