题目内容
1.从装有编号为1,2,3,…,n+1的n+1个球的口袋中取出m个球(0<m≤n,m,n∈N),共有Cn+1m种取法.在这Cn+1m种取法中,不取1号球有C10Cnm种取法;必取1号球有C11Cnm-1种取法.所以C10Cnm+C11Cnm-1=Cn+1m,即Cnm+Cnm-1=Cn+1m成立.试根据上述思想,则有当1≤k≤m≤n,k,m,n∈N时,Cnm+Ck1Cnm-1+Ck2Cnm-2+…+CkkCnm-k=$C_{n+k}^m$.分析 从装有n+1个球(其中n个白球,1个黑球)的口袋中取出m个球(0<m≤n,m,n∈N),共有Cn+1m种取法.在这Cn+1m种取法中,可以分成两类:一类是取出的m个球全部为白球,另一类是,取出1个黑球,m-1个白球,则Cnm+Cnm-1=Cn+1m根据上述思想,在式子:Cnm+Ck1•Cnm-1+Ck2•Cnm-2+…+Ckk•Cnm-k中,从第一项到最后一项分别表示:从装有n个白球,k个黑球的袋子里,取出m个球的所有情况取法总数的和,故根据排列组合公式,可得答案.
解答 解:在Cnm+Ck1•Cnm-1+Ck2•Cnm-2+…+Ckk•Cnm-k中,
从第一项到最后一项分别表示:从装有n个白球,k个黑球的袋子里,取出m个球的所有情况取法总数的和,
故从装有n+k球中取出m个球的不同取法数$C_{n+k}^m$.
故答案为:$C_{n+k}^m$.
点评 这个题结合考查了推理和排列组合,处理本题的关键是熟练掌握排列组合公式,明白每一项所表示的含义,再结合已知条件进行分析,最后给出正确的答案.
练习册系列答案
相关题目
12.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,根据收集到的数据(如下表),由最小二乘法得回归直线方程$\stackrel{∧}{y}$=0.68x+54.6,表中有一个数据模糊不清,请你推断该数据的值为( )
零件个数x(个) | 10 | 20 | 30 | 40 | 50 |
加工时间y(min) | 62 | ● | 75 | 81 | 89 |
A. | 68 | B. | 68.2 | C. | 70 | D. | 75 |
16.若函数f(x)=sinωx+$\sqrt{3}$cosωx(ω>0)的最小正周期为π,则它的图象的一个对称中心为( )
A. | ($\frac{π}{2}$,0) | B. | ($\frac{π}{3}$,0) | C. | ($\frac{π}{6}$,0) | D. | ($\frac{π}{12}$,0) |
13.设函数f(x)=Asin(ωx+φ)(A,ω,φ是常数,A>0,ω>0),若f(x)在区间$[\frac{π}{6},\frac{π}{2}]$上具有单调性,且$f({\frac{π}{2}})=f({\frac{2π}{3}})=-f({\frac{π}{6}})$,则f(x)的最小正周期为( )
A. | $\frac{2π}{3}$ | B. | $\frac{3π}{4}$ | C. | π | D. | 2π |