题目内容
【题目】已知三棱锥(如图一)的平面展开图(如图二)中,四边形为边长等于的正方形,和均为正三角形,在三棱锥中:
(Ⅰ)证明:平面平面;
(Ⅱ)若点为棱上一点且,求二面角的余弦值.
【答案】(Ⅰ)证明见解析;(Ⅱ).
【解析】
(Ⅰ)设的中点为,连接,,证明, ,平面,然后证明平面平面.
(Ⅱ)以,,所在直线分别为轴,轴,轴建立如图示空间直角坐标系,求出平面的法向量,平面的法向量,利用空间向量的数量积求解二面角的余弦值即可.
解:(Ⅰ)设的中点为,连接,.
由题意,得,, .
在中,,为的中点, ,
在中,,,, ,
.
,,平面,平面,
平面,平面平面.
(Ⅱ)由平面,, ,,
于是以,,所在直线分别为轴,轴,轴建立如图示空间直角坐标系,
则, , , ,, , , , .
设平面的法向量为,
则由得: .令,得,,即.
设平面的法向量为,
由得: ,令,得,z=1,即.
.由图可知,二面角的余弦值为.
练习册系列答案
相关题目
【题目】某校高一年级开设了丰富多彩的校本课程,现从甲、乙两个班随机抽取了5名学生校本课程的学分,统计如下表.
甲 | 8 | 11 | 14 | 15 | 22 |
乙 | 6 | 7 | 10 | 23 | 24 |
用分别表示甲、乙两班抽取的5名学生学分的方差,计算两个班学分的方差.得______,并由此可判断成绩更稳定的班级是______班.