题目内容
【题目】如图,⊙O过平行四边形ABCT的三个顶点B,C,T,且与AT相切,交AB的延长线于点D.
(1)求证:AT2=BTAD;
(2)E、F是BC的三等分点,且DE=DF,求∠A.
【答案】
(1)证明:因为∠A=∠TCB,∠ATB=∠TCB,
所以∠A=∠ATB,所以AB=BT.
又AT 2=ABAD,所以AT 2=BTAD
(2)解:取BC中点M,连接DM,TM.
由(1)知TC=TB,所以TM⊥BC.
因为DE=DF,M为EF的中点,所以DM⊥BC.
所以O,D,T三点共线,DT为⊙O的直径.
所以∠ABT=∠DBT=90°.
所以∠A=∠ATB=45°.
【解析】(1)证明AB=BT,结合切割线定理,即可证明结论;(2)取BC中点M,连接DM,TM,可得O,D,T三点共线,DT为⊙O的直径,即可求∠A.
练习册系列答案
相关题目