题目内容
【题目】工作人员需进入核电站完成某项具有高辐射危险的任务,每次只派一个人进去,且每个人只派一次,工作时间不超过10分钟,如果前一个人10分钟内不能完成任务则撤出,再派下一个人.现在一共只有甲、乙、丙三个人可派,他们各自能完成任务的概率分别为,,,假设,,互不相等,且假定各人能否完成任务的事件相互独立.
(1)如果按甲最先,乙次之,丙最后的顺序派人,求任务能被完成的概率.若改变三个人被派出的先后顺序,任务能被完成的概率是否发生变化?
(2)假定,试分析以怎样的先后顺序派出人员,可使所需派出的人员数目的数学期望达到最小.
【答案】(1),概率是一样
(2)先派甲,再派乙,最后派丙时
【解析】
(1)分别求解甲在先,乙次之,丙最后的顺序与甲在先,丙次之,乙最后的顺序派人的概率再分析大小关系即可.
(2)列出对应的分布列,再相减根据分析正负判断数学期望最小时的情况即可.
解:(1)按甲在先,乙次之,丙最后的顺序派人,任务能被完成的概率为;
若甲在先,丙次之,乙最后的顺序派人,任务能被完成的概率为
;
发现任务能完成的概率是一样.同理可以验证,不论如何改变三个人被派出的先后顺序,任务能被完成的概率不发生变化.
(2)由题意得可能取值为1,2,3,
按甲在先,乙次之,丙最后的顺序派人,所需派出的人员数目的分布列为:
1 | 2 | 3 | |
所以.
因为,且,
其他情况同理可得,所以要使所需派出的人员数目的均值(数学期望)达到最小,只能先派甲、乙中的一人.
若先派甲,再派乙,最后派丙,则;
若先派乙,再派甲,最后派丙,则;
所以
所以先派甲,再派乙,最后派丙时,均值(数学期望)达到最小.
【题目】十三届全国人大二次会议于2019年3月5日在京召开为了了解某校大学生对两会的关注程度,学校媒体在开幕后的第二天,从全校学生中随机抽取了180人,对是否收看2019年两会开幕会情况进行了问卷调查,统计数据如下:
收看 | 没收看 | |
男生 | 80 | 40 |
女生 | 30 | 30 |
(1)根据上表说明,在犯错误的概率不超过1%的前提下,能否认为该校大学生收看开幕会与性别有关?(计算结果精确到0.001)
(2)现从随机抽取的学生中,采用按性别分层抽样的方法选取6人,来参加2019年两会的志愿者宣传活动,若从这6人中随机选取2人到各班级宣传介绍,求恰好选到一名男生和一名女生的概率. 附,其中.
0.10 | 0.05 | 0.025 | 0.01 | 0.005 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 |