题目内容

已知A(0,7)、B(0,-7)、C(12,2),以C为一个焦点作过A、B的椭圆,椭圆的另一个焦点F的轨迹方程是(  )
A.y2-
x2
48
=1(y≤-1)
B.y2-
x2
48
=1
C.y2-
x2
48
=-1
D.x2-
y2
48
=1
由题意|AC|=13,|BC|=15,
|AB|=14,又|AF|+|AC|=|BF|+|BC|,
∴|AF|-|BF|=|BC|-|AC|=2<14.
故F点的轨迹是以A、B为焦点,实轴长为2的双曲线下支.
又c=7,a=1,b2=48,
所以轨迹方程为y2-
x2
48
=1(y≤-1).
故选A.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网