题目内容
【题目】如图,在矩形ABCD中,AB=3,BC=2,点M,N分别是边AB,CD上的点,且MN∥BC,.若将矩形ABCD沿MN折起使其形成60°的二面角(如图).
(1)求证:平面CND⊥平面AMND;
(2)求直线MC与平面AMND所成角的正弦值.
【答案】(1)见解析;(2).
【解析】
(1)转化为证明MN⊥平面CND;(2)过点C作CH⊥ND与点H,则MH是MC在平面AMND内的射影,所以∠CMH即直线MC与平面AMND所成的角.
(1)∵在矩形ABCD中,MN∥BC,
∴MN⊥ND,MN⊥NC,
又∵ND,NC是平面CND内的两条相交直线,
∴MN⊥平面CND,又MN平面AMND,
∴平面CND⊥平面AMND.
(2)由(1)知∠CND=60°,
又,AB=3,BC=2,MN∥BC,
所以CN=1,DN=2,
由余弦定理得 ,
所以∠DCN=90°,
过点C作CH⊥ND与点H,连接MH,
则∠CMH即直线MC与平面AMND所成的角,
又,
所以
故直线MC与平面AMND所成角的正弦值为.
【题目】某中学将100名高一新生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用A,B两种不同的教学方式分别在甲、乙两个班级进行教改实验.为了解教学效果,期末考试后,陈老师分别从两个班级中各随机抽取20名学生的成绩进行统计,作出茎叶图如图.记成绩不低于90分者为“成绩优秀”.
(1)在乙班样本的20个个体中,从不低于86分的成绩中随机抽取2个,求抽出的2个均“成绩优秀”的概率;
(2)由以上统计数据作出列联表,并判断能否在犯错误的概率不超过0.1的前提下认为:“成绩优秀”与教学方式有关.
0.400 | 0.250 | 0.150 | 0.100 | 0.050 | 0.025 | |
0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
参考公式:
【题目】某高校共有15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时)
(1)应收集多少位女生样本数据?
(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据分组区间为:.估计该校学生每周平均体育运动时间超过4个小时的概率.
(3)在样本数据中,有60位女生的每周平均体育运动时间超过4个小时.请完成每周平均体育运动时间与性别的列联表,并判断是否有的把握认为“该校学生的每周平均体育运动时间与性别有关”.
附:
0.10 | 0.05 | 0.010 | 0.005 | |
2.706 | 3.841 | 6.635 | 7.879 |