题目内容
【题目】设a为实数,函数f(x)=ex﹣x+a,x∈R.
(1)求f(x)在区间[﹣1,2]上的最值;
(2)求证:当a>﹣1,且x>0时, .
【答案】
(1)解:f'(x)=ex﹣1,令f'(x)=0,则x=0,
x∈(﹣1,0),f'(x)<0,f(x)为减函数,
x∈(0.2),f'(x)>0,f(x)为增函数,
所以,f(x)min=f(0)=1+a;
又因为 ,
所以
(2)解:证明:令 ,
由(1)知,g'(x)≥g'(0)=1+a>0,
所以g(x)在(0,+∞)单调递增,
所以g(x)>g(0)=0,
所以,当a>﹣1,且x>0时,
【解析】(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的最值即可;(2)令 ,根据函数的单调性求出g(x)>g(0),证出结论即可.
【考点精析】本题主要考查了函数的最大(小)值与导数的相关知识点,需要掌握求函数在上的最大值与最小值的步骤:(1)求函数在内的极值;(2)将函数的各极值与端点处的函数值,比较,其中最大的是一个最大值,最小的是最小值才能正确解答此题.
【题目】为大力提倡“厉行节约,反对浪费”,某市通过随机询问100名性别不同的居民是否做到“光盘”行动,得到如下列联表及附表: 经计算:
做不到“光盘”行动 | 做到“光盘”行动 | |
男 | 45 | 10 |
女 | 30 | 15 |
P(X2≥x0) | 0.10 | 0.05 | 0.025 |
x0 | 2.706 | 3.841 | 5.024 |
参照附表,得到的正确结论是( )
A.在犯错误的概率不超过1%的前提下,认为“该市民能否做到‘光盘’行动与性别有关”
B.在犯错误的概率不超过1%的前提下,认为“该市民能否做到‘光盘’行动与性别无关”
C.有90%以上的把握认为“该市民能否做到‘光盘’行动与性别有关”
D.有90%以上的把握认为“该市民能否做到‘光盘’行动与性别无关”