题目内容
【题目】在发生某公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志是“连续10日,每天新增疑似病例不超过7人”.已知过去10日,、、三地新增疑似病例数据信息如下:
地:总体平均数为3,中位数为4;
地:总体平均数为2,总体方差为3;
地:总体平均数为1,总体方差大于0;
则、、三地中,一定没有发生大规模群体感染的是__________地.
【答案】
【解析】
根据平均数,中位数和方差的定义及性质,依次判断即可.
地,平均数和中位数不能限制某一天的病例超过人,故不是地.
地,当总体平均数为2,
根据方差公式
假设存在某天新增疑似病例超过人,设为人,
则,
不成立,故一定没有发生大规模群体感染的是地.
地,当总体方差大于0时,不知道总体方差的具体数值,
每天新增疑似病例可以超过人,故不是地.
故答案为:
【题目】某总公司在A,B两地分别有甲、乙两个下属公司同种新能源产品(这两个公司每天都固定生产50件产品),所生产的产品均在本地销售.产品进人市场之前需要对产品进行性能检测,得分低于80分的定为次品,需要返厂再加工;得分不低于80分的定为正品,可以进人市场.检测员统计了甲、乙两个下属公司100天的生产情况及每件产品盈利亏损情况,数据如表所示:
表1
甲公司 | 得分 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
件数 | 10 | 10 | 40 | 40 | 50 | |
天数 | 10 | 10 | 10 | 10 | 80 |
表2
甲公司 | 得分 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
件数 | 10 | 5 | 40 | 45 | 50 | |
天数 | 20 | 10 | 20 | 10 | 70 |
表3
每件正品 | 每件次品 | |
甲公司 | 盈2万元 | 亏3万元 |
乙公司 | 盈3万元 | 亏3.5万元 |
(1)分别求甲、乙两个公司这100天生产的产品的正品率(用百分数表示).
(2)试问甲、乙两个公司这100天生产的产品的总利润哪个更大?说明理由.
(3)若以甲公司这100天中每天产品利润总和对应的频率作为概率,从甲公司这100天随机抽取1天,记这天产品利润总和为X,求X的分布列及其数学期望.