题目内容
【题目】如图,已知正三棱锥P-ABC的侧面是直角三角形,PA=6,顶点P在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E,连结PE并延长交AB于点G.
(Ⅰ)证明:G是AB的中点;
(Ⅱ)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.
【答案】(Ⅰ)见解析;(Ⅱ)作图见解析,体积为.
【解析】试题分析:证明由可得是的中点.(Ⅱ)在平面内,过点作的平行线交于点, 即为在平面内的正投影.根据正三棱锥的侧面是直角三角形且,可得在等腰直角三角形中,可得四面体的体积
试题解析:(Ⅰ)因为在平面内的正投影为,所以
因为在平面内的正投影为,所以
所以平面,故
又由已知可得, ,从而是的中点.
(Ⅱ)在平面内,过点作的平行线交于点, 即为在平面内的正投影.
理由如下:由已知可得 , ,又,所以,因此平面,即点为在平面内的正投影.
连结,因为在平面内的正投影为,所以是正三角形的中心.
由(Ⅰ)知, 是的中点,所以在上,故
由题设可得平面, 平面,所以,因此
由已知,正三棱锥的侧面是直角三角形且,可得
在等腰直角三角形中,可得
所以四面体的体积
练习册系列答案
相关题目