题目内容
【题目】已知函数,,且曲线与在处有相同的切线.
(Ⅰ)求实数的值;
(Ⅱ)求证:在上恒成立;
(Ⅲ)当时,求方程在区间内实根的个数.
【答案】(Ⅰ);(Ⅱ)证明见解析;(Ⅲ)2.
【解析】
试题分析:
(Ⅰ)函数有相同的切线,则,,据此计算可得;
(Ⅱ)构造函数,令,原问题等价于在上恒成立,讨论函数的单调性可得,即在上恒成立.
(Ⅲ)构造函数,其中,结合导函数讨论函数的单调性有 .构造函数,则在内单调递减,,据此讨论可得在区间内有两个零点,即方程在区间内实根的个数为2.
试题解析:
(Ⅰ)∵,,,
∴.
∵,,
∴,.
∵,即,
∴.
(Ⅱ)证明:设,
.
令,则有.
当变化时,的变化情况如下表:
∴,即在上恒成立.
(Ⅲ)设,其中,
.
令,则有.
当变化时,的变化情况如下表:
∴ .
,
设,其中,则,
∴在内单调递减,,
∴,故,而.
结合函数的图象,可知在区间内有两个零点,
∴方程在区间内实根的个数为2.
【题目】某同学用“五点法”画函数在某一个周期内的图象时,列表并填入了部分数据,如下表:
0 | |||||
0 | 2 | 0 | 0 |
(1)请将上表数据补充完整;函数的解析式为= (直接写出结果即可);
(2)求函数的单调递增区间;
(3)求函数在区间上的最大值和最小值.
【题目】甲、乙两台机床生产同一型号零件.记生产的零件的尺寸为(cm),相关行业质检部门规定:若,则该零件为优等品;若,则该零件为中等品;其余零件为次品.现分别从甲、乙机床生产的零件中各随机抽取50件,经质量检测得到下表数据:
尺寸 | ||||||
甲零件频数 | 2 | 3 | 20 | 20 | 4 | 1 |
乙零件频数 | 3 | 5 | 17 | 13 | 8 | 4 |
(Ⅰ)设生产每件产品的利润为:优等品3元,中等品1元,次品亏本1元.若将频率视为概率,试根据样本估计总体的思想,估算甲机床生产一件零件的利润的数学期望;
(Ⅱ)对于这两台机床生产的零件,在排除其它因素影响的情况下,试根据样本估计总体的思想,估计约有多大的把握认为“零件优等与否和所用机床有关”,并说明理由.
参考公式:.
参考数据:
0.25
0.15
0.10
0.05
0.025
0.010
1.323
2.072
2.706
3.841
5.024
6.635