题目内容
【题目】某个体户计划经销A,B两种商品,据调查统计,当投资额为x(x≥0)万元时,在经销A,B商品中所获得的收益分别为f(x)万元与g(x)万元,其中f(x)=a(x-1)+2,g(x)=6ln(x+b)(a>0,b>0).已知投资额为零时收益为零.
(1)求a,b的值;
(2)如果该个体户准备投入5万元经销这两种商品,请你帮他制定一个资金投入方案,使他能获得最大利润.
【答案】(1)a=2,b=1;(2)答案见解析.
【解析】
(1)利用已知条件通过f(0)=0,g(0)=0即可得出a、b的值。
(2)设投入B商品的资金为x万元(0<x≤5) 则投入经销A商品的资金为(5-x)万元,
设所获得的收益为S(x)万元,则S(x)=2(5-x)+6ln (x+1)=6ln (x+1)-2x+10,(0<x≤5)通过函数的导数,求出函数的最值即可。
(1)由投资额为零时收益为零,
可知f(0)=-a+2=0,g(0)=6ln b=0,
解得a=2,b=1.
(2)由(1)可得f(x)=2x,g(x)=6ln (x+1).
设投入经销B商品的资金为x万元(0<x≤5),
则投入经销A商品的资金为(5-x)万元,
设所获得的收益为S(x)万元,则S(x)=2(5-x)+6ln (x+1)=6ln (x+1)-2x+10(0<x≤5).
S′(x)=-2,令S′(x)=0,得x=2.
当0<x<2时,S′(x)>0,函数S(x)单调递增;
当2<x≤5时,S′(x)<0,函数S(x)单调递减.
所以,当x=2时,函数S(x)取得最大值,S(x)max=S(2)=6ln 3+6≈12.6万元.
所以,当投入经销A商品3万元,B商品2万元时,他可获得最大收益,收益的最大值约为12.6万元.
练习册系列答案
相关题目