题目内容
已知函数.(I)判断的奇偶性;(Ⅱ)设函数在区间上的最小值为,求的表达式;(Ⅲ)若,证明:方程有两个不同的正数解.
(I)既不是奇函数也不是偶函数(Ⅱ)(Ⅲ)见解析
解析
(本小题满分13分)已知且,(1)判断函数的奇偶性;(2) 判断函数的单调性,并证明;(3)当函数的定义域为时,求使成立的实数的取值范围.
已知三次函数的导函数,,、为实数。(Ⅰ)若曲线在点(,)处切线的斜率为12,求的值;(Ⅱ)若在区间[-1,1]上的最小值、最大值分别为-2、1,且,求函数的解析式。
(12分)设函数.(1)求的单调区间;(2)当时,求函数在区间上的最小值.
设的定义域为,对于任意正实数恒有,且当时,(1)求的值; (2)求证:在上是增函数;(3)解关于的不等式.
已知Z)是奇函数,又,求的值。
已知函数,且f(1)=,f(2)=.(1)求;(2)判断f(x)的奇偶性;(3)试判断函数在上的单调性,并证明。
(本小题满分14分)若,,,为常数,且(Ⅰ)求对所有实数成立的充要条件(用表示);(Ⅱ)设为两实数,且,若求证:在区间上的单调增区间的长度和为(闭区间的长度定义为).
(本小题12分)如图,函数y=|x|在x∈[-1,1]的图象上有两点A、B,AB∥Ox轴,点M(1,m)(m是已知实数,且m>)是△ABC的边BC的中点。(Ⅰ)写出用B的横坐标t表示△ABC面积S的函数解析式S=f(t);(Ⅱ)求函数S=f(t)的最大值,并求出相应的C点坐标。