题目内容

18.已知sinθ=-$\frac{2\sqrt{6}}{5}$,π<θ<$\frac{3π}{2}$.
(Ⅰ)求cosθ,tanθ的值;
(Ⅱ)求[sin($\frac{θ}{2}$+π)+sin($\frac{θ}{2}$+$\frac{π}{2}$)]•[cos($\frac{3π}{2}$-$\frac{θ}{2}$)+cos($\frac{θ}{2}$-5π)]的值.

分析 (1)根据θ的范围确定出cosθ<0,由sinθ的值,利用同角三角函数间基本关系求出cosθ的值,即可确定出tanθ的值;
(2)原式利用诱导公式及平方差公式化简,再利用二倍角的余弦函数公式变形,将cosθ的值代入计算即可求出值.

解答 解:(Ⅰ)∵π<θ<$\frac{3π}{2}$,
∴cosθ<0,
∵sin2θ+cos2θ=1,sinθ=-$\frac{2\sqrt{6}}{5}$,
∴cosθ=-$\frac{1}{5}$,
则tanθ=$\frac{sinθ}{cosθ}$=2$\sqrt{6}$;
(Ⅱ)∵cosθ=-$\frac{1}{5}$,
∴原式=(-sin$\frac{θ}{2}$+cos$\frac{θ}{2}$)(-sin$\frac{θ}{2}$-cos$\frac{θ}{2}$)=sin2$\frac{θ}{2}$-cos2$\frac{θ}{2}$=-cosθ=$\frac{1}{5}$.

点评 此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网