题目内容
3.已知c<d,a>b>0,下列不等式中必成立的一个是( )A. | a+c>b+d | B. | a-c>b-d | C. | ad<bc | D. | $\frac{a}{c}$>$\frac{b}{d}$ |
分析 由题意可得-c>-d,且 a>b,相加可得 a-c>b-d,从而得出结论.
解答 解:∵c<d,a>b>0,
∴-c>-d,且 a>b,
相加可得a-c>b-d,
故选:B
点评 本题考查不等式与不等关系,不等式性质的应用,得到-c>-d,且 a>b,是解题的关键.
练习册系列答案
相关题目
11.已知变量x与y正相关,且由观测数据算得样本平均数$\overline{x}$=3,$\overline{y}$=3.5,则由观测的数据得线性回归方程可能为( )
A. | $\stackrel{∧}{y}$=-2x+9.5 | B. | $\stackrel{∧}{y}$=-0.3x+4.2 | C. | $\stackrel{∧}{y}$=0.4x+2.3 | D. | $\stackrel{∧}{y}$=2x-2.4 |
18.下面四组表示的是同一函数的是( )
A. | $f(x)=x,g(x)={(\sqrt{x})^2}$ | B. | f(x)=(x-1)0,g(x)=1 | ||
C. | $f(x)=|x-1|,g(x)=\sqrt{{{(x-1)}^2}}$ | D. | $f(x)=\sqrt{x-1}\sqrt{x+1},g(x)=\sqrt{{x^2}-1}$ |
8.某学校为了解该校高三年级学生在市一练考试的数学成绩情况,随机从该校高三文科与理科各抽取50名学生的数学成绩,作出频率分布直方图如图,规定考试成绩[120,150]内为优秀.
(1)由以上频率分布直方图填写下列2×2列联表,若按是否优秀来判断,是否有99%的把握认为该校的文理科数学成绩有差异.
(2)某高校派出2名教授对该校随机抽取的学生中一练数学成绩在140分以上的学生进行自主招生面试,每位教授至少面试一人,每位学生只能被一位教授面试,若甲教授面试的学生人数为ξ,求ξ的分布列和数学期望.
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$;
(1)由以上频率分布直方图填写下列2×2列联表,若按是否优秀来判断,是否有99%的把握认为该校的文理科数学成绩有差异.
文科 | 理科 | 总计 | |
优秀 | |||
非优秀 | |||
总计 | 50 | 50 | 100 |
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$;
P(K2>k) | 0.10 | 0.025 | 0.010 |
K2 | 2.706 | 5.024 | 6.635 |
12.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的宣传费xi和年销售量yi(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.(表中w1=$\sqrt{x}$1,$\overline w$=$\frac{1}{8}$$\sum_{i=1}^n{w_i}$)
(Ⅰ)根据散点图判断,y=a+bx与y=c+d$\sqrt{x}$,哪一个适宜作为年销售量y关于年宣传费x的回归方程类型(给出判断即可,不必说明理由);
(Ⅱ)根据( I)的判断结果及表中数据,建立y关于x的回归方程;
(Ⅲ)已知这种产品的年利润z与x,y的关系为z=0.2y-x,根据( II)的结果回答下列问题:
(i)当年宣传费x=90时,年销售量及年利润的预报值时多少?
(ii)当年宣传费x为何值时,年利润的预报值最大?
$\overline x$ | $\overline y$ | $\overline w$ | $\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}$ | $\sum_{i=1}^n{{{({w_i}-\overline w)}^2}}$ | $\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}$ | $\sum_{i=1}^n{({w_i}-\overline w)({y_i}-\overline y)}$ |
46.6 | 563 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
(Ⅱ)根据( I)的判断结果及表中数据,建立y关于x的回归方程;
(Ⅲ)已知这种产品的年利润z与x,y的关系为z=0.2y-x,根据( II)的结果回答下列问题:
(i)当年宣传费x=90时,年销售量及年利润的预报值时多少?
(ii)当年宣传费x为何值时,年利润的预报值最大?