题目内容
【题目】已知函数.
(1)若时,的解集为时,求实数的值;
(2)若对任意,存在,使,求实数的范围;
(3)集合,若,求实数a的取值范围.
【答案】(1);(2);(3).
【解析】
(1)的解集为,则,代入即可解得b的值;
(2)存在,使,则当时即可,再根据和分别求出b的范围,再取并集即可;
(3)设,,因为,所以,且当时,无解,再根据二次函数的性质得出,代入二次函数解析式解得,再根据得出,以及得出,最终取交集得出a的取值范围.
(1)的解集为,且是二次函数,
解得.
(2)存在,使,则当时即可
是开口向上的二次函数
或
①若
则
对任意都成立
,即;
②若
则
对任意都成立
,即;
要存在,使
和中只需一值>0即可,
即实数的范围为
(3)设,,
,且当时,无解
设,且,
则,
∴当时,无解
若,又
∴当时,一定有解
又,
,即
令或0
又且
即a的取值范围为.
【题目】某学校为调查高三年级学生的身高情况,按随机抽样的方法抽取100名学生,得到男生身高情况的频率分布直方图(图(1))和女生身高情况的频率分布直方图(图(2)).已知图(1)中身高在的男生人数有16人.
(1)试问在抽取的学生中,男,女生各有多少人?
(2)根据频率分布直方图,完成下列的列联表,并判断能有多大(百分之几)的把握认为“身高与性别有关”?
总计 | |||
男生身高 | |||
女生身高 | |||
总计 |
(3)在上述100名学生中,从身高在之间的男生和身高在之间的女生中间按男、女性别分层抽样的方法,抽出6人,从这6人中选派2人当旗手,求2人中恰好有一名女生的概率.
参考公式:
参考数据:
0.025 | 0.010 | 0.005 | 0.001 | |
5.024 | 6.635 | 7.879 | 10.828 |
【题目】某地区2007年至2013年农村居民家庭纯收入y(单位:千元)的数据如下表:
年份 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |
年份代号t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均纯收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)求y关于t的线性回归方程;
(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:
,