题目内容
(本小题满分10分)
在正方体中,E,F分别是CD,A1D1中点
(1)求证:AB1⊥BF;
(2)求证:AE⊥BF;
(3)棱CC1上是否存在点P,使BF⊥平面AEP,若存在,
确定点P的位置;若不存在,说明理由
在正方体中,E,F分别是CD,A1D1中点
(1)求证:AB1⊥BF;
(2)求证:AE⊥BF;
(3)棱CC1上是否存在点P,使BF⊥平面AEP,若存在,
确定点P的位置;若不存在,说明理由
(1)略
(2)略
(3)存在
解:(1)证明:连结A1B,CD1 ∵AB1⊥A1B, AB1⊥BC,A1B∩BC=B ∴AB1⊥平面A1BCD1 , 又BF平面A1BCD1 ,所以AB1⊥BF
(2) 证明:取AD中点M,连结FM,BM
∵ABCD为正方形,E,M分别为所在棱的中点,
∴AE⊥BM,又∵FM⊥AE,BM∩FM="M, "
∴AE⊥平面BFM, 又BF平面BFM,∴AE⊥BF
(3) 存在,P是CC1的中点,则易证PE∥AB1,故A,B1,E,P四点共面
证明:由(1)(2)知AB1⊥BF,AE⊥BF,AB1∩AE=A,∴BF⊥平面AEB1,
即BF⊥平面AEP
(2) 证明:取AD中点M,连结FM,BM
∵ABCD为正方形,E,M分别为所在棱的中点,
∴AE⊥BM,又∵FM⊥AE,BM∩FM="M, "
∴AE⊥平面BFM, 又BF平面BFM,∴AE⊥BF
(3) 存在,P是CC1的中点,则易证PE∥AB1,故A,B1,E,P四点共面
证明:由(1)(2)知AB1⊥BF,AE⊥BF,AB1∩AE=A,∴BF⊥平面AEB1,
即BF⊥平面AEP
练习册系列答案
相关题目