题目内容
6.某学校安排甲、乙、丙、丁四位同学参加数学、物理、化学竞赛,要求每位同学仅报一科,每科至少有一位同学参加,且甲、乙不能参加同一学科,则不同的安排方法有30种.分析 先不考虑学生甲,乙不能同时参加同一学科竞赛,从4人中选出两个人作为一个元素,同其他两个元素在三个位置上排列,其中有不符合条件的,即甲乙两人在同一位置,去掉即可
解答 解:从4人中选出两个人作为一个元素有C42种方法,
同其他两个元素在三个位置上排列C42A33=36,
其中有不符合条件的,
即学生甲,乙同时参加同一学科竞赛有A33种结果,
∴不同的参赛方案共有 36-6=30,
故答案为:30
点评 对于复杂一点的排列计数问题,有时要先整体再部分,有时排列组合和分步计数原理,分类计数原理一起出现,有时分类以后,每类方法并不都是一步完成的,必须在分类后又分步,综合利用两个原理解决,即类中有步,步中有类.
练习册系列答案
相关题目
1.若f(x)=sin(2x+θ),则“f(x)的图象关于x=$\frac{π}{3}$对称”是“θ=-$\frac{π}{6}$”的( )
A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充要条件 | D. | 既不充分又不必要条件 |
11.已知集合A={1,3,x},B={1,$\sqrt{x}$},A∩B=B,则x=( )
A. | 0或3 | B. | 3或9 | C. | 0或9 | D. | 1或9 |
16.已知函数f(x)=ex-mx+1的图象为曲线C,若曲线C存在与直线y=ex垂直的切线,则实数m的取值范围是( )
A. | (-∞,$\frac{1}{e}$) | B. | ($\frac{1}{e}$,+∞) | C. | ($\frac{1}{e}$,e) | D. | (e,+∞) |