题目内容
【题目】“割圆术”是刘徽最突出的数学成就之一,他在《九章算术注》中提出割圆术,并作为计算圆的周长,面积已经圆周率的基础,刘徽把圆内接正多边形的面积一直算到了正3072边形,并由此而求得了圆周率为3.1415和3.1416这两个近似数值,这个结果是当时世界上圆周率计算的最精确数据.如图,当分割到圆内接正六边形时,某同学利用计算机随机模拟法向圆内随机投掷点,计算得出该点落在正六边形内的频率为0.8269,那么通过该实验计算出来的圆周率近似值为(参考数据:)
A. 3.1419B. 3.1417C. 3.1415D. 3.1413
【答案】A
【解析】
先设圆的半径为,表示出圆的面积和正六边形的面积,再由题中所给概率,即可得出结果.
设圆的半径为,则圆的面积为
,正六边形的面积为
,因而所求该实验的概率为
,则
.
故选A
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】某学校为了了解初三学生的体育锻炼情况,随机抽取了40名学生对一周的体育锻炼时间长(单位:小时)进行统计,并将数据整理如下:
时间长 性别 | |||||
男 | 1 | 2 | 3 | 6 | 8 |
女 | 0 | 2 | 10 | 6 | 2 |
(1)采用样本估计总体的方式,试估计该校的所有学生中一周的体育锻炼时间长为的概率;
(2)若将一周的体育锻炼时间长不低于3小时的评定为“体育锻炼合格者”,否则为“不合格者”,根据以上数据完成下面的列联表,并据此判断能否有95%的把握认为体育锻炼与性别有关?附:
,其中
.
0.10 | 0.05 | 0.025 | 0.01 | |
2.706 | 3.841 | 5.024 | 6.635 |
【题目】现有一环保型企业,为了节约成本拟进行生产改造,现将某种产品产量与单位成本
统计数据如下:
月份 | 1 | 2 | 3 | 4 | 5 | 6 |
产量(千件) | 2 | 3 | 4 | 5 | 4 | 5 |
单位成本(元/件) | 73 | 72 | 71 | 73 | 69 | 68 |
(Ⅰ)试确定回归方程;
(Ⅱ)指出产量每增加1000件时,单位成本平均下降多少?
(Ⅲ)假定单位成本为70元/件时,产量应为多少件?
(参考公式:.)
(参考数据
)