题目内容
设、分别为双曲线的左、右焦点.若在双曲线右支上存在点,满足,且点的横坐标为(为半焦距),则该双曲线的离心率为( )
A. | B. | C.2 | D.2 |
C
根据双曲线的第二定义,结合|PF2|=|F1F2|,且点P的横坐标为c,可得几何量之间的关系,从而可求双曲线的离心率
解:由题意,=
∵|PF2|=|F1F2|,
∴=
∴
∴5e2-8e-4=0
∴(e-2)(5e+2)=0
∵e>1
∴e=2
故选C.
以双曲线为载体,考查双曲线的几何性质,解题的关键是得出几何量之间的关系.
解:由题意,=
∵|PF2|=|F1F2|,
∴=
∴
∴5e2-8e-4=0
∴(e-2)(5e+2)=0
∵e>1
∴e=2
故选C.
以双曲线为载体,考查双曲线的几何性质,解题的关键是得出几何量之间的关系.
练习册系列答案
相关题目