ÌâÄ¿ÄÚÈÝ
10£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{3}}{2}$£¬¶Ì°ëÖ᳤Ϊ$\sqrt{2}$£®£¨¢ñ£© ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£© ÒÑ֪бÂÊΪ$\frac{1}{2}$µÄÖ±Ïßl½»ÍÖÔ²CÓÚÁ½¸ö²»Í¬µãA£¬B£¬µãMµÄ×ø±êΪ£¨2£¬1£©£¬ÉèÖ±ÏßMAÓëMBµÄбÂÊ·Ö±ðΪk1£¬k2£®
¢ÙÈôÖ±Ïßl¹ýÍÖÔ²CµÄ×󶥵㣬Çó´Ëʱk1£¬k2µÄÖµ£»
¢ÚÊÔ̽¾¿k1+k2ÊÇ·ñΪ¶¨Öµ£¿²¢ËµÃ÷ÀíÓÉ£®
·ÖÎö £¨¢ñ£©Í¨¹ýÍÖÔ²µÄÀëÐÄÂÊÒÔ¼°$b=\sqrt{2}$£¬a2=b2+c2£¬Çó³öa£¬b£¬¼´¿ÉÇó³öÍÖÔ²CµÄ·½³Ì£®
£¨¢ò£©¢ÙÈôÖ±Ïß¹ýÍÖÔ²µÄ×󶥵㣬д³öÖ±Ïߵķ½³ÌÓëÍÖÔ²ÁªÁ¢·½³Ì£¬Çó³öÖ±ÏßµÄбÂÊ£¬ÍƳö½á¹û£®
¢Úk1+k2 Ϊ¶¨Öµ£¬ÇÒk1+k2=0£¬Ö¤Ã÷ÈçÏ£ºÉèÖ±ÏßÔÚyÖáÉϵĽؾàΪm£¬ÍƳöÖ±Ïߵķ½³Ì£¬È»ºóÁ½ÌõÖ±ÏßÓëÍÖÔ²ÁªÁ¢£¬ÉèA£¨x1£¬y1£©£®B£¨x2£¬y2£©£¬ÀûÓÃΤ´ï¶¨ÀíÒÔ¼°ÅбðʽÇó³ök1+k2£¬È»ºó»¯¼òÇó½â¼´¿É£®
½â´ð ±¾ÌâÂú·Ö£¨12·Ö£©£®
½â£º£¨¢ñ£©ÓÉÍÖÔ²µÄÀëÐÄÂÊΪ$\frac{\sqrt{3}}{2}$£¬¡à$\frac{c}{a}=\frac{\sqrt{3}}{2}$£¬ÓÖ$b=\sqrt{2}$£¬a2=b2+c2£¬
½âµÃa2=8£¬b2=2£¬
ËùÒÔÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{2}=1$£®¡£¨3·Ö£©
£¨¢ò£©¢ÙÈôÖ±Ïß¹ýÍÖÔ²µÄ×󶥵㣬ÔòÖ±Ïߵķ½³ÌÊÇl£ºy=$\frac{1}{2}x+\sqrt{2}$£¬
ÁªÁ¢·½³Ì×é$\left\{\begin{array}{l}y=\frac{1}{2}x+\sqrt{2}\\ \frac{{x}^{2}}{8}+\frac{{y}^{2}}{2}=1\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{x}_{1}=0\\{y}_{1}=\sqrt{2}\end{array}\right.$»ò$\left\{\begin{array}{l}{x}_{2}=-2\sqrt{2}\\{y}_{2}=0\end{array}\right.$£¬
¹Ê${k}_{1}=-\frac{\sqrt{2}-1}{2}$£¬${k}_{2}=\frac{\sqrt{2}-1}{2}$£®¡£¨6·Ö£©
¢Úk1+k2 Ϊ¶¨Öµ£¬ÇÒk1+k2=0£®¡£¨7·Ö£©
Ö¤Ã÷ÈçÏ£º
ÉèÖ±ÏßÔÚyÖáÉϵĽؾàΪm£¬ËùÒÔÖ±Ïߵķ½³ÌΪ$y=\frac{1}{2}x+m$£®
ÓÉ$\left\{\begin{array}{l}y=\frac{1}{2}x+m\\ \frac{{x}^{2}}{8}+\frac{{y}^{2}}{2}=1\end{array}\right.$£¬µÃx2+2mx+2m2-4=0£®
µ±¡÷=4m2-8m2+16£¾0£¬¼´-2£¼m£¼2ʱ£¬Ö±ÏßÓëÍÖÔ²½»ÓÚÁ½µã¡£¨8·Ö£©
ÉèA£¨x1£¬y1£©£®B£¨x2£¬y2£©£¬Ôòx1+x2=-2m£®${x}_{1}•{x}_{2}=2{m}^{2}-4$¡£¨9·Ö£©
ÓÖ${k}_{1}=\frac{{y}_{1}-1}{{x}_{1}-2}$£¬${k}_{2}=\frac{{y}_{2}-1}{{x}_{2}-2}$
¹Ê${k}_{1}+{k}_{2}=\frac{{y}_{1}-1}{{x}_{1}-2}+\frac{{y}_{2}-1}{{x}_{2}-2}$=$\frac{{£¨y}_{1}-1£©£¨{x}_{2}-2£©+£¨{y}_{2}-1£©{£¨x}_{1}-2£©}{{£¨x}_{1}-2£©£¨{x}_{2}-2£©}$£®¡£¨10·Ö£©
ÓÖ${y}_{1}=\frac{1}{2}{x}_{1}+m$£¬${y}_{2}=\frac{1}{2}{x}_{2}+m$£¬
ËùÒÔ£¨y1-1£©£¨x2-2£©+£¨y2-1£©£¨x1-2£©=$£¨\frac{1}{2}{x}_{1}+m-1£©£¨{x}_{2}-2£©+£¨\frac{1}{2}{x}_{2}+m-1£©£¨{x}_{1}-2£©$
=x1•x2+£¨m-2£©£¨x1+x2£©-4£¨m-1£©
=2m2-4+£¨m-2£©£¨-2m£©-4£¨m-1£©=0£¬
¹Êk1+k2=0£®¡£¨12·Ö£©
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌµÄÇ󷨣¬Ö±ÏßÓëÍÖÔ²µÄ×ÛºÏÓ¦Ó㬿¼²é·ÖÎöÎÊÌâ½â¾öÎÊÌâµÄÄÜÁ¦£¬·ÖÀàÌÖÂÛ˼ÏëµÄÓ¦Óã®
A£® | 4$\sqrt{6}$ | B£® | $\sqrt{15}$ | C£® | 3$\sqrt{2}$ | D£® | 2$\sqrt{2}$ |
A£® | 18 | B£® | 12 | C£® | 6 | D£® | 12¦Ð |
A£® | f£¨x1£©£¼0£¬f£¨x2£©£¼-$\frac{1}{2}$ | B£® | f£¨x1£©£¾0£¬f£¨x2£©£¾-$\frac{1}{2}$ | C£® | f£¨x1£©£¼0£¬f£¨x2£©£¾-$\frac{1}{2}$ | D£® | f£¨x1£©£¾0£¬f£¨x2£©£¼-$\frac{1}{2}$ |