题目内容
在等差数列{an}中,a1=8,a4=2,
(1)求数列{an}的通项;
(2)设bn=
(n∈N*),求数列{bn}的前n项和Tn.
(1)求数列{an}的通项;
(2)设bn=
1 | n(12-an) |
分析:(1)由等差数列的性质可知,a4-a1=3d,从而可求d,进而可求通项
(2)由bn=
=
(
-
),由裂项相消法,可求出数列{bn}的前n项和Tn.
(2)由bn=
1 |
n(12-an) |
1 |
2 |
1 |
n |
1 |
n+1 |
解答:解:(1)∵a1=8,a4=2,
∴a4-a1=3d=-6,
∴d=-2
an=a1+(n-1)d=8-2(n-1)=10-2n,(n∈N*),
(2)∵bn=
=
=
•
=
(
-
)
∴Tn=
(1-
)+
(
-
)+
(
-
)+…+
(
-
)
=
[(1-
)+(
-
)+(
-
)+…+(
-
)]
=
(1-
)
=
∴a4-a1=3d=-6,
∴d=-2
an=a1+(n-1)d=8-2(n-1)=10-2n,(n∈N*),
(2)∵bn=
1 |
n(12-an) |
1 |
n[12-(10-2n)] |
1 |
2 |
1 |
n(n+1) |
1 |
2 |
1 |
n |
1 |
n+1 |
∴Tn=
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
3 |
1 |
2 |
1 |
3 |
1 |
4 |
1 |
2 |
1 |
n |
1 |
n+1 |
=
1 |
2 |
1 |
2 |
1 |
2 |
1 |
3 |
1 |
3 |
1 |
4 |
1 |
n |
1 |
n+1 |
=
1 |
2 |
1 |
n+1 |
=
n |
2n+2 |
点评:本题考查的知识点是等差数列通项公式及数列求和,(1)的关键是求出数列的公差,(2)的关键是对数列{bn}通项公式的裂项.
练习册系列答案
相关题目