题目内容
17.设变量x,y满足约束条件$\left\{\begin{array}{l}{x-2≤0}\\{x-2y≤0}\\{x+2y-8≤0}\end{array}\right.$则目标函数z=3x+y的最大值为( )A. | 7 | B. | 8 | C. | 9 | D. | 14 |
分析 作出不等式组对应的平面区域,利用目标函数的几何意义,求最大值.
解答 解:作出不等式组对应的平面区域如图:(阴影部分).
由z=3x+y得y=-3x+z,
平移直线y=-3x+z,
由图象可知当直线y=-3x+z经过点A时,直线y=-3x+z的截距最大,
此时z最大.
由$\left\{\begin{array}{l}x-2=0\\ x+2y-8=0\end{array}\right.$,解得$\left\{\begin{array}{l}x=2\\ y=3\end{array}\right.$,即A(2,3),
代入目标函数z=3x+y得z=3×2+3=9.
即目标函数z=3x+y的最大值为9.
故选:C.
点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.
练习册系列答案
相关题目
5.设a1,a2,…,an∈R,n≥3.若p:a1,a2,…,an成等比数列;q:(a12+a22+…+an-12)(a22+a32+…+an2)=(a1a2+a2a3+…+an-1an)2,则( )
A. | p是q的充分条件,但不是q的必要条件 | |
B. | p是q的必要条件,但不是q的充分条件 | |
C. | p是q的充分必要条件 | |
D. | p既不是q的充分条件,也不是q的必要条件 |
12.某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在某一个周期内的图象时,列表并填入了部分数据,如表:
(1)请将上表数据补充完整,填写在相应位置,并直接写出函数f(x)的解析式;
(2)将y=f(x)图象上所有点向左平行移动θ(θ>0)个单位长度,得到y=g(x)的图象.若y=g(x)图象的一个对称中心为($\frac{5π}{12}$,0),求θ的最小值.
ωx+φ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
x | $\frac{π}{3}$ | $\frac{5π}{6}$ | |||
Asin(ωx+φ) | 0 | 5 | -5 | 0 |
(2)将y=f(x)图象上所有点向左平行移动θ(θ>0)个单位长度,得到y=g(x)的图象.若y=g(x)图象的一个对称中心为($\frac{5π}{12}$,0),求θ的最小值.