题目内容
【题目】设f(x)=asin 2x+bcos 2x,其中a,b∈R,ab≠0.若f(x)≤|f( )|对一切x∈R恒成立,则以下结论正确的是(写出所有正确结论的编号). ① ;② ≥ ;
③f(x)的单调递增区间是(kπ+ ,kπ+ )(k∈Z);
④f(x)既不是奇函数也不是偶函数.
【答案】①②④
【解析】解:由f(x)=asin 2x+bcos 2x= sin(2x+φ). ∵f(x)≤|f( )|对一切x∈R恒成立
∴当x= 时,函数取得最大值,即2× +φ= ,解得:φ= .
故得f(x)= sin(2x+ ).
则f( )= sin(2× + )=0,∴①对.
②f( )= sin(2× + )=-
f( )= sin(2× + )= ,∴ ≥ ,∴②对.
由 2x+ ,(k∈Z)
解得:- +kπ≤x≤ +kπ,(k∈Z)
∴f(x)的单调递增区间是(kπ- ,kπ+ )(k∈Z);∴③不对
f(x)的对称轴2x+ = +kπ,(k∈Z);∴③
解得:x= kπ+ ,不是偶函数,
当x=0时,f(0)= ,不关于(0,0)对称,
∴f(x)既不是奇函数也不是偶函数.
所以答案是①②④.
练习册系列答案
相关题目
【题目】某同学用“五点法”画函数 在区间[﹣ , ]上的图象时,列表并填入了部分数据,如表:
2x﹣ | ﹣ π | ﹣π | ﹣ | 0 | π | |
x | ﹣ | ﹣ | ﹣ | |||
f(x) |
(1)请将上表数据补充完整,并在给出的直角坐标系中,画出f(x)在区间[﹣ , ]上的图象;
(2)求f(x)的最小值及取最小值时x的集合;
(3)求f(x)在 时的值域.