题目内容
已知椭圆
+y2=1.
(1)求斜率为2的平行弦的中点轨迹方程;
(2)过A(2,1)的直线l与椭圆相交,求l被截得的弦的中点轨迹方程;
(3)过点P(
,
)且被P点平分的弦所在的直线方程.
x2 |
2 |
(1)求斜率为2的平行弦的中点轨迹方程;
(2)过A(2,1)的直线l与椭圆相交,求l被截得的弦的中点轨迹方程;
(3)过点P(
1 |
2 |
1 |
2 |
分析:(1)设弦的两端点分别为M(x1,y1),N(x2,y2),中点为R(x,y),则x12+2y12=2,x22+2y22=2,两式相减得
=-
=-
,由此能求出斜率为2的平行弦的中点轨迹方程.
(2)设直线方程为y-1=k(x-2),设两交点分别为(x3,y3),(x4,y4),则
+y32=1,
+y42=1,两式相减得
+ (y3 +y4)(y3-y4)=0,故
+
=0,令中点坐标为(x,y),则x+2y•
=0,由此能求出l被截得的弦的中点轨迹方程.
(3)设过点P(
,
)的直线与
+y2=1交于E(x5,y5),F(x6,y6),由P(
,
)是EF的中点,知x5+x6=1,y5+y6=1,把E(x5,y5),F(x6,y6)代入与
+y2=1,得k=
=-
,由此能求出过点P(
,
)且被P点平分的弦所在的直线方程.
x1-y2 |
y1-x2 |
x1+x2 |
2(y1+y2 ) |
x |
2y |
(2)设直线方程为y-1=k(x-2),设两交点分别为(x3,y3),(x4,y4),则
x3 2 |
2 |
x42 |
2 |
(x3+x4)(x3-x4) |
2 |
x3+x4 |
2 |
(y3+y4)(y3-y4) |
x3-x4 |
y3-y4 |
x3-x4 |
(3)设过点P(
1 |
2 |
1 |
2 |
x2 |
2 |
1 |
2 |
1 |
2 |
x2 |
2 |
y5-y6 |
x5-x6 |
1 |
2 |
1 |
2 |
1 |
2 |
解答:解:(1)设弦的两端点分别为M(x1,y1),N(x2,y2) 的中点为R(x,y),
则x12+2y12=2,x22+2y22=2,
两式相减并整理可得
=
=-
,①
将
=2代入式①,得所求的轨迹方程为x+4y=0(椭圆内部分).
(2)可设直线方程为y-1=k(x-2)(k≠0,否则与椭圆相切),
设两交点分别为(x3,y3),(x4,y4),
则
+y32=1,
+y42=1,两式相减得
+ (y3 +y4)(y3-y4)=0,
显然x3≠x4(两点不重合),
故
+
=0,
令中点坐标为(x,y),
则x+2y•
=0,
又(x,y)在直线上,所以
=k,
显然
=k,
故x+2y•k=x+2y•
=0,即所求轨迹方程为x2+2y2-2x-2y=0(夹在椭圆内的部分).
(3)设过点P(
,
)的直线与
+y2=1交于E(x5,y5),F(x6,y6),
∵P(
,
)是EF的中点,
∴x5+x6=1,y5+y6=1,
把E(x5,y5),F(x6,y6)代入与
+y2=1,
得
,
∴(x5+x6)(x5-x6)+2(y5+y6)(y5-y6)=0,
∴(x5-x6)+2(y5-y6)=0,
∴k=
=-
,
∴过点P(
,
)且被P点平分的弦所在的直线方程:y-
=-
(x-
),
即2x+4y-3=0.
则x12+2y12=2,x22+2y22=2,
两式相减并整理可得
x1-x2 |
y1-y2 |
2(y1+y2) |
x1+x2 |
x |
2y |
将
y1-y2 |
x1-x2 |
(2)可设直线方程为y-1=k(x-2)(k≠0,否则与椭圆相切),
设两交点分别为(x3,y3),(x4,y4),
则
x3 2 |
2 |
x42 |
2 |
(x3+x4)(x3-x4) |
2 |
显然x3≠x4(两点不重合),
故
x3+x4 |
2 |
(y3+y4)(y3-y4) |
x3-x4 |
令中点坐标为(x,y),
则x+2y•
y3-y4 |
x3-x4 |
又(x,y)在直线上,所以
y-1 |
x-2 |
显然
y3-y4 |
x3-x4 |
故x+2y•k=x+2y•
y-1 |
x-2 |
(3)设过点P(
1 |
2 |
1 |
2 |
x2 |
2 |
∵P(
1 |
2 |
1 |
2 |
∴x5+x6=1,y5+y6=1,
把E(x5,y5),F(x6,y6)代入与
x2 |
2 |
得
|
∴(x5+x6)(x5-x6)+2(y5+y6)(y5-y6)=0,
∴(x5-x6)+2(y5-y6)=0,
∴k=
y5-y6 |
x5-x6 |
1 |
2 |
∴过点P(
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
即2x+4y-3=0.
点评:本题考查直线与椭圆的位置关系的应用,是中档题.解题时要认真审题,注意点差法的合理运用.
练习册系列答案
相关题目