题目内容

(2012•钟祥市模拟)如图,已知椭圆
x2
2
+y2=1
内有一点M,过M作两条动直线AC、BD分别交椭圆于A、C和B、D两点,若|
AB
|2+|
CD
|2=|
BC
|2+|
AD
|2


(1)证明:AC⊥BD;
(2)若M点恰好为椭圆中心O
(i)四边形ABCD是否存在内切圆?若存在,求其内切圆方程;若不存在,请说明理由.
(ii)求弦AB长的最小值.
分析:(1)设出点的坐标,利用|
AB
|2+|
CD
|2=|
BC
|2+|
AD
|2
,即可证得
AC
BD
=0
,从而AC⊥BD;
(2)(i)根据AC⊥BD,由椭圆对称性知AC与BD互相平分,所以四边形ABCD是菱形,它存在内切圆,设直线AB方程为:y=kx+m,利用圆心到直线的距离,可得r2=
m2
k2+1
;联立 
y=kx+m
x2
2
+y2=1
,利用OA⊥OB,可得m2=
2
3
(1+k2)
,从而可求内切圆的方程;
(ii)求出弦AB的长|AB|=
3
2
m2
16(
3
2
m2-1)m2
[1+2(
3
2
m2-1)]
2
-8
(m2-1)
1+2(
3
2
m2-1)
=
12m2(2m2-1)
(3m2-1)2
,令3m2-1=t,则m2=
t+1
3
,所以|AB|=
12•
t+1
3
(2
t+1
3
-1)
t2
=
4
3
(-
1
t2
+
1
t
+2)
=
4
3
[-(
1
t2
-
1
2
)]
2
+
9
4
根据m2
2
3
,即可求得弦AB长的最小值.
解答:(1)证明:设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4
|
AB
|2+|
CD
|2=|
BC
|2+|
AD
|2
(x1-x2)2+(y1-y2)2+(x3-x4)2+(y3-y4)2=(x2-x3)2+(y2-y3)2+(x1-x4)2+(y1-y4)2
展开整理得:x1x2+y1y2+x3x4+y3y4=x2x3+y2y3+x1x4+y1y4
即x1(x2-x4)+x3(x4-x2)+y1(y2-y4)+y3(y4-y2)=0
∴(x1-x3)(x2-x4)+(y1-y3)(y2-y4)=0
AC
BD
=0

∴AC⊥BD….(4分)
(2)解:(i)∵AC⊥BD,由椭圆对称性知AC与BD互相平分,
∴四边形ABCD是菱形,它存在内切圆,圆心为O,设半径为r,直线AB方程为:y=kx+m
r=
|m|
k2+1
,即r2=
m2
k2+1

联立 
y=kx+m
x2
2
+y2=1
得(1+2k2)x2+4kmx+2m2-2=0
△=(4km)2-4(1+2k2)(2m2-2)>0,x1+x2=
-4mk
1+2k2
x1x2=
2m2-2
1+2k2

由(1)知OA⊥OB,
∴x1x2+y1y2=0,即x1x2+(kx1+m)(kx2+m)=0
x1x2+k2x1x2+km(x1+x2)+m2=0
2m2-2
1+2k2
+k2
2m2-2
1+2k2
+km
-4km
1+2k2
+m2=0

∴2m2-2+2m2k2-2k2-4k2m2+m2+2m2k2=0
m2=
2
3
(1+k2)

②代入①有:r2=
2
3

∴存在内切圆,其方程为:x2+y2=
2
3
….(9分)
容易验证,当k不存在时,上述结论仍成立.
(ii)|AB|=
1+k2
•|x1-x2|=
1+k2
16k2m2
(1+2k2)2
-4
2m2-2
1+2k2

m2=
2
3
(1+k2)
k2=
3
2
m2-1≥0,m2
2
3

|AB|=
3
2
m2
16(
3
2
m2-1)m2
[1+2(
3
2
m2-1)]
2
-8
(m2-1)
1+2(
3
2
m2-1)
=
12m2(2m2-1)
(3m2-1)2

令3m2-1=t,则m2=
t+1
3

|AB|=
12•
t+1
3
(2
t+1
3
-1)
t2
=
4
3
(-
1
t2
+
1
t
+2)
=
4
3
[-(
1
t2
-
1
2
)]
2
+
9
4

m2
2
3
,∴
t+1
3
2
3
,故t≥1,∴0<
1
t
≤1

1
t
=1
时,|AB|min=
4
3
+2
=
2
6
3
,此时m2=
2
3
k2=0

容易验证,当k不存在时,|AB|=
2
6
3
….(13分)
点评:本题以椭圆方程为载体,考查向量知识的运用,考查椭圆与圆的综合,考查圆中的弦长的求解,挖掘隐含,熟练计算是关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网