题目内容

【题目】已知数列{an}满足a1=1,an+1=
(Ⅰ)求证:an+1<an
(Ⅱ)求证: ≤an

【答案】解:(Ⅰ)证明:由a1=1,an+1= ,得an>0,(n∈N), 则an+1﹣an= ﹣an= <0,
∴an+1<an
(Ⅱ)证明:由(Ⅰ)知0<an<1,又an+1= .,∴ = ,即an+1 an
∴an an1≥( 2an1≥…≥( 2an1≥( n1a1= ,即an
由an+1= ,则 =an+
=an
=a1=1, =a2= =a3=( 2 =an1≥( n2
累加得 =1+ +( 2+…+( n2= =2﹣( n2
而a1=1,
≥3﹣( n2= =
∴an
综上得 ≤an
【解析】(Ⅰ)由an>0,则做差an+1﹣an= ﹣an= <0,即可证明an+1<an;(Ⅱ)由an+1 an , an an1≥( 2an1≥…≥( 2an1≥( n1a1= ,则an .由 =an , 采用“累加法”即可求得 ≥3﹣( n2= = ,即可求得 ≤an

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网