题目内容
【题目】在锐角三角形ABC中,9tanAtanB+tanBtanC+tanCtanA的最小值为 .
【答案】25
【解析】解:如图,不妨设CD=1,AD=m,BD=n,
∴tanA= ,tanB= ,(m>0,n>0),
∴tanC=tan(A+B)= = ,
∵tanC>0,
∴mn<1,
∴9tanAtanB+tanBtanC+tanCtanA= +( + ) ,
= + ,
≥ + ,
=( + )[mn+(1﹣mn)],
=9+4+ + ,
≥13+2
=13+12=25,当且仅当 = ,即m=n= 时取等号,
故最小值为25,
所以答案是:25 .
【考点精析】本题主要考查了基本不等式在最值问题中的应用的相关知识点,需要掌握用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”才能正确解答此题.
练习册系列答案
相关题目