题目内容

【题目】已知函数f(x)满足f(x+1)=﹣f(x﹣1),且当x∈(0,2)时,f(x)=2x , 则f(log280)=

【答案】
【解析】解:由f(x)满足f(x+1)=﹣f(x﹣1),

可得:f(x+1+1)=﹣f(x+1﹣1),即f(x+2)=﹣f(x).

∴f(x+2+2)=﹣f(x+2),即f(x+4)=f(x).

∴f(x)是周期函数,周期T=4.

由f(log280)=f(4+log25)=f(log25).

当x∈(0,2)时,f(x)=2x

那么:x﹣2∈(0,2)时,可得x∈(2,4),则f(x﹣2)=﹣f(x).

即f(x)=﹣f(x﹣2)=﹣2x﹣2

∵2<log25<4.

∴f(log25)= =

故f(log280)=

所以答案是:

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网