题目内容

【题目】已知函数f(x)=sin(2x+φ),其中φ为实数,若f(x)≤|f( )|对x∈R恒成立,且f( )>f(π),则f(x)的单调递增区间是(
A.[kπ﹣ ,kπ+ ](k∈Z)
B.[kπ,kπ+ ](k∈Z)
C.[kπ+ ,kπ+ ](k∈Z)
D.[kπ﹣ ,kπ](k∈Z)

【答案】C
【解析】解:若 对x∈R恒成立,
则f( )等于函数的最大值或最小值
即2× +φ=kπ+ ,k∈Z
则φ=kπ+ ,k∈Z

即sinφ<0
令k=﹣1,此时φ= ,满足条件
令2x ∈[2kπ﹣ ,2kπ+ ],k∈Z
解得x∈
故选C
由若 对x∈R恒成立,结合函数最值的定义,我们易得f( )等于函数的最大值或最小值,由此可以确定满足条件的初相角φ的值,结合 ,易求出满足条件的具体的φ值,然后根据正弦型函数单调区间的求法,即可得到答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网