题目内容
10.设α∈(0,$\frac{π}{2}$)且tanα=$\sqrt{2}$-1,f(x)=x2•tan2α+x•sin(2α+$\frac{π}{4}$),数列{an}中,a1=$\frac{1}{2}$,an+1=f(an).(1)化简f(x);
(2)求证:an+1>an;
(3)求证:1<$\frac{1}{{a}_{1}+1}$+$\frac{1}{{a}_{2}+1}$+…+$\frac{1}{{a}_{n}+1}$<2.
分析 (1)通过tan2α=$\frac{2tanα}{1-ta{n}^{2}α}$及$α∈(0,\frac{π}{2})$知sin(2α+$\frac{π}{4}$)=1,进而可得结论;
(2)通过对an+1=f(an)=${{a}_{n}}^{2}$+an变形即可;
(3)通过利用an+1=an+${{a}_{n}}^{2}$,分离$\frac{1}{{a}_{n+1}}$=$\frac{1}{{a}_{n}+{{a}_{n}}^{2}}$中分母,并项相加即可.
解答 (1)解:根据二倍角的正切公式得:tan2α=$\frac{2tanα}{1-ta{n}^{2}α}$=$\frac{2(\sqrt{2}-1)}{1-(\sqrt{2}-1)^{2}}$=1,
又∵$α∈(0,\frac{π}{2})$,∴$2α=\frac{π}{4}$,
∴sin(2α+$\frac{π}{4}$)=1,
∴f(x)=x2+x;
(2)证明:∵an+1=f(an)=${{a}_{n}}^{2}$+an,
∴an+1-an=${{a}_{n}}^{2}$>0,
∴an+1>an;
(3)证明:∵an+1=an+${{a}_{n}}^{2}$,
∴$\frac{1}{{a}_{n+1}}$=$\frac{1}{{a}_{n}+{{a}_{n}}^{2}}$=$\frac{1}{{a}_{n}}$-$\frac{1}{1+{a}_{n}}$,
∴$\frac{1}{1+{a}_{n}}$=$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n+1}}$,
又∵a1=$\frac{1}{2}$,
∴$\frac{1}{{a}_{1}+1}$+$\frac{1}{{a}_{2}+1}$+…+$\frac{1}{{a}_{n}+1}$=$\frac{1}{{a}_{1}}$-$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{2}}$-$\frac{1}{{a}_{3}}$+…+$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n+1}}$
=$\frac{1}{{a}_{1}}$-$\frac{1}{{a}_{n+1}}$
=2-$\frac{1}{{a}_{n+1}}$,
∵a2=$(\frac{1}{2})^{2}$+$\frac{1}{2}$=$\frac{3}{4}$,a3=$(\frac{3}{4})^{2}+\frac{3}{4}$>1,
又∵当n≥2时,an+1≥a3>1,
∴1<2-$\frac{1}{{a}_{n+1}}$<2,
∴1<$\frac{1}{{a}_{1}+1}$+$\frac{1}{{a}_{2}+1}$+…+$\frac{1}{{a}_{n}+1}$<2.
点评 本题是一道数列与函数的综合题,涉及到三角函数的求值等问题,利用并项法相加是解决本题的关键,属于中档题.
A. | $\frac{1}{2}{a}^{2}$ | B. | $\frac{1}{4}$a2 | C. | $\frac{\sqrt{2}}{4}{a}^{2}$ | D. | $\frac{\sqrt{3}}{4}$a2 |