题目内容

18.已知函数f(x)=-$\sqrt{3}$sin2x+sinxcosx.
(1)求f($\frac{π}{6}$)的值;
(2)求函数f(x)的最小正周期及最大值.
(3)求函数f(x)的单调递增区间.

分析 利用和角公式,以及二倍角公式,化简函数为一个角的一个三角函数的形式,
(1)将x=$\frac{π}{6}$代入可得f($\frac{π}{6}$)的值;
(2)根据A=1,ω=2,B=-$\frac{\sqrt{3}}{2}$,可得函数f(x)的最小正周期及最大值.
(3)利用y=sinx的单调增区间,求出f(x)的单调增区间.

解答 解:∵函数f(x)=-$\sqrt{3}$sin2x+sinxcosx=$-\frac{\sqrt{3}}{2}$(1-cos2x)+$\frac{1}{2}$sin2x=$\frac{1}{2}$sin2x+$\frac{\sqrt{3}}{2}$cos2x-$\frac{\sqrt{3}}{2}$=sin(2x+$\frac{π}{3}$)-$\frac{\sqrt{3}}{2}$.
(1)当x=$\frac{π}{6}$时,f($\frac{π}{6}$)=sin(2×$\frac{π}{6}$+$\frac{π}{3}$)-$\frac{\sqrt{3}}{2}$=sin$\frac{2π}{3}$-$\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{2}$-$\frac{\sqrt{3}}{2}$=0;
(2)∵A=1,ω=2,B=-$\frac{\sqrt{3}}{2}$,
故函数f(x)的最小正周期为π,
最大值为1-$\frac{\sqrt{3}}{2}$.
(3)由2x+$\frac{π}{3}$∈[2kπ-$\frac{π}{2}$,2kπ+$\frac{π}{2}$],k∈Z得:
2x∈[2kπ-$\frac{5π}{6}$,2kπ+$\frac{π}{6}$],k∈Z,
即x∈[kπ-$\frac{5π}{12}$,kπ+$\frac{π}{12}$],k∈Z,
即函数f(x)的单调递增区间为:[kπ-$\frac{5π}{12}$,kπ+$\frac{π}{12}$],k∈Z,

点评 本题考查三角函数的周期性及其求法,正弦函数的定义域和值域,正弦函数的单调性,考查计算能力,逻辑思维能力,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网