题目内容
已知数列{an}是公差为d的等差数列,数列{bn}是公比为q的(q∈R且q≠1)的等比数列,若函数f(x)=(x-1)2,且a1=f(d-1),a3=f(d+1),b1=f(q+1),b3=f(q-1),
(1)求数列{an}和{bn}的通项公式;
(2)设数列{cn}的前n项和为Sn,对一切n∈N*,都有
=an+1成立,求![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823123708067387.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823123708239416.gif)
(1)求数列{an}和{bn}的通项公式;
(2)设数列{cn}的前n项和为Sn,对一切n∈N*,都有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823123708036543.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823123708067387.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823123708239416.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082312370825481.gif)
(1) an=a1+(n-1)d=2(n-1) , bn=b·qn-1=4·(-2)n-1 ,
(2)![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231237082851411.gif)
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231237082851411.gif)
(1)∵a1=f(d-1)=(d-2)2,a3=f(d+1)=d2,
∴a3-a1=d2-(d-2)2=2d,
∵d=2,∴an=a1+(n-1)d=2(n-1);
又b1=f(q+1)=q2,b3=f(q-1)=(q-2)2,
∴
=q2,由q∈R,且q≠1,得q=-2,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231237083171846.gif)
∴bn=b·qn-1=4·(-2)n-1
(2)令
=dn,则d1+d2+…+dn=an+1,(n∈N*),
∴dn=an+1-an=2,
∴
=2,即cn=2·bn=8·(-2)n-1;∴Sn=
[1-(-2)n]
∴![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231237084261402.gif)
∴a3-a1=d2-(d-2)2=2d,
∵d=2,∴an=a1+(n-1)d=2(n-1);
又b1=f(q+1)=q2,b3=f(q-1)=(q-2)2,
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823123708301563.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231237083171846.gif)
∴bn=b·qn-1=4·(-2)n-1
(2)令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823123708348253.gif)
∴dn=an+1-an=2,
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823123708348253.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823123708395228.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082312370825481.gif)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231237084261402.gif)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目