题目内容
【题目】皮埃尔·德·费马,法国律师和业余数学家,被誉为“业余数学家之王”,对数学界做出了重大贡献,其中在1636年发现了:若是质数,且互质,那么的次方除以的余数恒等于1,后来人们称该定理为费马小定理.依此定理若在数集中任取两个数,其中一个作为,另一个作为,则所取两个数不符合费马小定理的概率为( )
A.B.C.D.
【答案】A
【解析】
根据题意将符合费马小定理的基本事件列举出来,再计算出总的基本事件,最后利用古典概型概率计算公式计算即可.
所取两个数符合费马小定理时,
因为是质数,所以可能为:2,3,5;
又互质,所以可能的情况共9种,
列举如下:;
在数集中任取两个数,共有种情况,
因此,所取两个数不符合费马小定理的概率为,
故选:A.
【题目】在传染病学中,通常把从致病刺激物侵入机体或者对机体发生作用起,到机体出现反应或开始呈现该疾病对应的相关症状时止的这一阶段称为潜伏期. 一研究团队统计了某地区1000名患者的相关信息,得到如下表格:
潜伏期(单位:天) | |||||||
人数 |
(1)求这1000名患者的潜伏期的样本平均数(同一组中的数据用该组区间的中点值作代表);
(2)该传染病的潜伏期受诸多因素的影响,为研究潜伏期与患者年龄的关系,以潜伏期是否超过6天为标准进行分层抽样,从上述1000名患者中抽取200人,得到如下列联表. 请将列联表补充完整,并根据列联表判断是否有的把握认为潜伏期与患者年龄有关;
潜伏期天 | 潜伏期天 | 总计 | |
50岁以上(含50岁) | |||
50岁以下 | 55 | ||
总计 | 200 |
(3)以这1000名患者的潜伏期超过6天的频率,代替该地区1名患者潜伏期超过6天发生的概率,每名患者的潜伏期是否超过6天相互独立. 为了深入研究,该研究团队随机调查了名患者,其中潜伏期超过6天的人数最有可能(即概率最大)是多少?
附:
,其中.