题目内容

【题目】如图,在三棱柱ABC﹣A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.

(Ⅰ)求证:AA1⊥平面ABC;

(Ⅱ)求证二面角A1﹣BC1﹣B1的余弦值;

【答案】见解析;( .

【解析】试题分析:)先利用正方形得到线线垂直,再利用面面垂直的性质定理进行证明;()利用勾股定理证明线线垂直,合理建立空间直角坐标系,写出出相关点的坐标,求出相关平面的法向量,再通过空间向量的夹角公式进行求解.

试题解析:(I)证明:∵AA1C1C是正方形,∴AA1⊥AC.又∵平面ABC⊥平面AA1C1C,平面ABC∩平面AA1C1C=AC,

∴AA1⊥平面ABC.

(II)由AC=4,BC=5,AB=3.

∴AC2+AB2=BC2,∴AB⊥AC.

建立如图所示的空间直角坐标系,则A1(0,0,4),B(0,3,0),B1(0,3,4),C1(4,0,4),∴

设平面A1BC1的法向量为,平面B1BC1的法向量为=

,令,解得

,令,解得

===

∴二面角A1﹣BC1﹣B1的余弦值为

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网