题目内容
已知椭圆C:
=1(a>b>0)的一个顶点为A(2,0),离心率为
.直线y=k(x-1)与椭圆C交于不同的两点M,N.
(1)求椭圆C的方程;
(2)当△AMN的面积为
时,求k的值.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042004593695.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042004624413.png)
(1)求椭圆C的方程;
(2)当△AMN的面积为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042004640479.png)
(1)
=1(2)k=±1.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042004655663.png)
(1)由题意得
解得b=
,所以椭圆C的方程为
=1.
(2)由
得(1+2k2)x2-4k2x+2k2-4=0.设点M,N的坐标分别为(x1,y1),(x2,y2),
则y1=k(x1-1),y2=k(x2-1),x1+x2=
,x1x2=
,
所以MN=
=
.
又因为点A(2,0)到直线y=k(x-1)的距离d=
,所以△AMN的面积为S=
MN·d=
.由
=
,解得k=±1.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240420046551185.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042004671344.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042004655663.png)
(2)由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240420047021146.png)
则y1=k(x1-1),y2=k(x2-1),x1+x2=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042004718640.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042004733642.png)
所以MN=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240420047491486.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240420047641022.png)
又因为点A(2,0)到直线y=k(x-1)的距离d=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042004780568.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042004796338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042004811887.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042004811887.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042004640479.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目