题目内容

9、已知函数f(x)=sinx+ex+x2010,令f1(x)=f′(x),f2(x)=f′1(x),f3(x)=f′2(x),…,fn+1(x)=f′n(x),则f2011(x)=(  )
分析:利用基本初等函数:三角函数,指数函数,幂函数的导数运算法则求出各阶导数,找规律.
解答:解:f1(x)=f′(x)=cosx+ex+2010x2009
f2(x)=f′1(x)=-sinx+ex+2010×2009×x2008
f3(x)=f′2(x)=-cosx+ex+2010×2009×2008x2007
f4(x)=f′3(x)=sinx+ex+2010×2009×2008×2007x2006

∴f2011(x)=-cosx+ex
故选D
点评:本题考查基本初等函数的导数公式、考查通过不完全归纳找规律的推理方法.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网