题目内容

15.已知定义在(0,+∞)上的单调函数f(x),对?x∈(0,+∞),都有f[f(x)-log2x]=3,则方程f(x)-f′(x)=2的解所在的区间是(  )
A.(0,$\frac{1}{2}$)B.(1,2)C.($\frac{1}{2}$,1)D.(2,3)

分析 设t=f(x)-log2x,则f(x)=log2x+t,又由f(t)=3,即log2t+t=3,解可得t的值,可得f(x)的解析式,由二分法分析可得h(x)的零点所在的区间为(1,2),结合函数的零点与方程的根的关系,即可得答案.

解答 解:根据题意,对任意的x∈(0,+∞),都有f[f(x)-log2x]=3,
又由f(x)是定义在(0,+∞)上的单调函数,
则f(x)-log2x为定值,
设t=f(x)-log2x,则f(x)=log2x+t,
又由f(t)=3,即log2t+t=3,
解可得,t=2;
则f(x)=log2x+2,f′(x)=$\frac{1}{ln2•x}$,
将f(x)=log2x+2,f′(x)=$\frac{1}{ln2•x}$代入f(x)-f′(x)=2,
可得log2x+2-$\frac{1}{ln2•x}$=2,
即log2x-$\frac{1}{ln2•x}$=0,
令h(x)=log2x-$\frac{1}{ln2•x}$,
分析易得h(1)=-$\frac{1}{ln2}$<0,h(2)=1-$\frac{1}{2ln2}$>0,
则h(x)=log2x-$\frac{1}{ln2•x}$的零点在(1,2)之间,
则方程log2x-$\frac{1}{ln2•x}$=0,即f(x)-f′(x)=2的根在(1,2)上,
故选:B.

点评 本题考查二分法求函数的零点与函数零点与方程根的关系的应用,关键点和难点是求出f(x)的解析式.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网