题目内容

(2012•香洲区模拟)已知向量
m
=(-2sinx,-1),
n
=(-cosx,cos2x)
,定义f(x)=
m
n

(1)求函数f(x)的表达式,并求其单调增区间;
(2)在锐角△ABC中,角A、B、C对边分别为a、b、c,且f(A)=1,bc=8,求△ABC的面积.
分析:(1)通过向量的数量积,二倍角的三角函数求函数f(x)的表达式,通过正弦函数的单调增区间求其单调增区间;
(2)利用f(A)=1,求出A的值,利用bc=8,通过△ABC的面积公式求解即可.
解答:解:(1)因为已知向量
m
=(-2sinx,-1),
n
=(-cosx,cos2x)

f(x)=
m
n
=2sin2x-cos2x=
2
sin(2x-
π
4
)…(3分)
令2kπ-
π
2
≤2x-
π
4
≤2kπ+
π
2
,k∈Z,
解得kπ-
π
8
≤x≤kπ+
8

所以,函数f(x)的单调递增区间为[kπ-
π
8
,kπ+
8
],k∈Z.…(6分)
(2)∵f(A)=1,
2
sin(2A-
π
4
)=1,
∴2A-
π
4
=2Kπ+
π
4

∴A=kπ+
π
4
,又△ABC为锐角三角形,
则A=
π
4
,又bc=8,
则△ABC的面积S=
1
2
bcsinA=
1
2
×8×
2
2
=2
2
.…(12分)
点评:题考查了平面向量的数量积运算,二倍角的正弦函数公式,两角和与差的正弦函数公式,正弦函数的定义域与值域,三角形的面积公式,以及特殊角的三角函数值,熟练掌握公式及法则是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网