题目内容
(本小题满分12分)已知![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232313029571237.png)
(Ⅰ)求函数
的单调增区间
(Ⅱ)在
中,
分别是角
的对边,且
,求
的面积.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232313029571237.png)
(Ⅰ)求函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231302973495.png)
(Ⅱ)在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231302988544.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231303004450.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231303020516.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231303035992.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231302988544.png)
(Ⅰ)
的单调递增区间是[
](
);
(Ⅱ) S△ABC=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231303144908.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231302973495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231303113761.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231303129445.png)
(Ⅱ) S△ABC=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231303144908.png)
(I)先借助三角恒等变换公式把f(x)进行化简为![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232313031762210.png)
,然后再利用正弦函数的单调增区间来求出f(x)的单调增区间.
(II)在(I)的基础上,利用
,可求出A角,再利用
求出
,从而利用公式
求出面积.
(Ⅰ)因为
=
=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232313033321038.png)
=
=
…………(3分)
所以函数
的单调递增区间是[
](
)……………(5分)
(Ⅱ)因为
=
,所以
,又
,所以
,从而
…………(7分)
在
中,∵
∴1=b2+c2-2bccosA,即1=4-3bc.故bc=1(10分)
从而S△ABC=
…………(12分)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232313031762210.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232313031911359.png)
(II)在(I)的基础上,利用
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231303207639.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232313032381017.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231303254335.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231303254798.png)
(Ⅰ)因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231302973495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232313033161084.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232313033321038.png)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231303347952.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231303363792.png)
所以函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231302973495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231303113761.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231303129445.png)
(Ⅱ)因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231302973495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231303456338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231303488893.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231303503529.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231303550907.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231303566987.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231302988544.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231303612923.png)
从而S△ABC=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231303144908.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目