题目内容
已知数列{an},,,记,,
,若对于任意,A(n),B(n),C(n)成等差数列.
(1)求数列{an}的通项公式;
(2)求数列{|an|}的前n项和.
(1)(2)
解析试题分析:(1)A(n),B(n),C(n)成等差数列
,可知数列{an}是等差数列.
(2)由第(1)的结论知,所以当时 ;当时,
于是:当所以当时 ,数列{|an|}成等差,首项为 ,公差为,由等差数列求和公式求解;
或直接求
当时,数列{|an|}从第三项起成等差数列,可由等差数列求和公式解决,或作如下变化:
==其余便可由等差数列求和公式直接求解.
试题解析:
解:(1)根据题意A(n), B(n), C(n)成等差数列, ∴A(n)+ C(n)=2 B(n); 2分
整理得 ,
∴数列{an}是首项为,公差为3的等差数列. 4分
∴;..........................6分
(2) , 记数列的前n项和为Sn.
当时, ;9分
当时, ;.11分
综上,. ..12分
考点:1、等差数列的通项公式与前 项和公式;2、等差中项的性质.
练习册系列答案
相关题目